Numerical Simulation and Verification of Curtain Wall Systems under Shock Pressure

AbstractWhen properly designed, framed, and anchored, blast-resistant laminates for curtain walls can greatly reduce or eliminate the hazard and injury from flying glass, and are capable of maintaining the integrity of a building envelope and reducing interior damage in an explosion event. Existing blast-resistant glazing research and design practice ignores the negative phase of the shock wave, which can affect the response of a curtain wall system and anchorage. Therefore, dynamic modeling and high-explosive field testing of two full-scale curtain wall systems using a shock tube are presented in this paper. The LS-DYNA numerical simulations were verified using the blast testing of two curtain wall systems, an original design and a blast-retrofitted design. The response of the glazing system to the positive and negative phases was investigated. The modeled dynamic response correlated well with the measured response of the glass laminates and the mullion supporting the curtain wall units. This study can b...