Stabilisation of discrete steady adjoint solvers

A new implicit time-stepping scheme which uses Runge-Kutta time-stepping and Krylov methods as a smoother inside FAS-cycle multigrid acceleration is proposed to stabilise the flow solver and its discrete adjoint counterpart. The algorithm can fully converge the discrete adjoint solver in a wide range of cases where conventional point-implicit methods fail due to either physical or numerical instability. This enables the discrete adjoint to be applied to a much wider range of flow regimes. In addition, the new algorithm offers improved efficiency when applied to stable cases for which the conventional Block-Jacobi solver can fully converge. Both stable and unstable cases are presented to demonstrate the improved robustness and performance of the new scheme. Eigen-analysis is presented to outline the mechanism of the adjoint stabilisation effect.

[1]  Stefan Langer,et al.  Agglomeration multigrid methods with implicit Runge-Kutta smoothers applied to aerodynamic simulations on unstructured grids , 2014, J. Comput. Phys..

[2]  Cord-Christian Rossow,et al.  Efficient computation of compressible and incompressible flows , 2007, J. Comput. Phys..

[3]  Pierre Moinier,et al.  Edge-Based Multigrid and Preconditioning for Hybrid Grids , 1999 .

[4]  R. Dwight,et al.  Efficient and robust algorithms for solution of the adjoint compressible Navier–Stokes equations with applications , 2009 .

[5]  Norbert Kroll,et al.  The DLR Flow Solver TAU - Status and Recent Algorithmic Developments , 2014 .

[6]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[7]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[8]  Eli Turkel,et al.  Analysis of a RK/Implicit Smoother for Multigrid , 2011 .

[9]  Jens-Dominik Müller,et al.  On the performance of discrete adjoint CFD codes using automatic differentiation , 2005 .

[10]  T. Bewley,et al.  A computational framework for the regularization of adjoint analysis in multiscale PDE systems , 2004 .

[11]  R. Dwight Efficiency Improvements of RANS-Based Analysis and Optimization using Implicit and Adjoint Methods on Unstructured Grids , 2006 .

[12]  Thomas M. Smith,et al.  Intelligent Nonlinear Solvers for Computational Fluid Dynamics , 2006 .

[13]  Ken Badcock,et al.  Accelerating Convergence of the CFD Linear Frequency Domain Method by a Preconditioned Linear Solver , 2012 .

[14]  Carsten Othmer,et al.  Adjoint methods for car aerodynamics , 2014, Journal of Mathematics in Industry.

[15]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[16]  R. C. Swanson,et al.  An efficient solver for the RANS equations and a one-equation turbulence model , 2011 .

[17]  W. K. Anderson,et al.  Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation , 1997 .

[18]  R. C. Swanson,et al.  A Study of Multigrid Preconditioners Using Eigensystem Analysis , 2005 .

[19]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[20]  B. Christianson Reverse aumulation and imploicit functions , 1998 .

[21]  Kyriakos C. Giannakoglou,et al.  A continuous adjoint method with objective function derivatives based on boundary integrals, for inviscid and viscous flows , 2007 .

[22]  C. Othmer A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows , 2008 .

[23]  Dimitri J. Mavriplis,et al.  Geometry Optimization in Three-Dimensional Unsteady Flow Problems using the Discrete Adjoint , 2013 .

[24]  Achi Brandt,et al.  Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition , 2011 .

[25]  D. Mavriplis An assessment of linear versus non-linear multigrid methods for unstructured mesh solvers , 2001 .

[26]  Luigi Martinelli,et al.  Calculations of viscous flows with a multigrid method , 1987 .

[27]  Jens-Dominik M Uller Coarsening 3-d Hybrid Meshes for Multigrid Methods Copper Mountain Multigrid Conference, April 1999 , 1999 .

[28]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[29]  B. Christianson Reverse Accumulation and Implicit Functions , 2010 .

[30]  M. Giles,et al.  Algorithm Developments for Discrete Adjoint Methods , 2003 .

[31]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[32]  David L. Darmofal,et al.  Effect of Small-Scale Unsteadiness on Adjoint-Based Output Sensitivity , 2009 .

[33]  D. Mavriplis Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes , 1997 .

[34]  Alain Dervieux,et al.  Unstructured multigridding by volume agglomeration: Current status , 1992 .

[35]  Michael B. Giles,et al.  Stabilization of linear flow solver for turbomachinery aeroelasticity using Recursive Projection method , 2004 .

[36]  Laurent Hascoët,et al.  The Tapenade automatic differentiation tool: Principles, model, and specification , 2013, TOMS.

[37]  D. Mavriplis Solution of the Unsteady Discrete Adjoint for Three-Dimensional Problems on Dynamically Deforming Unstructured Meshes , 2008 .

[38]  M. Giles On the iterative solution of adjoint equations , 2000 .

[39]  Eli Turkel,et al.  Convergence acceleration of Runge-Kutta schemes for solving the Navier-Stokes equations , 2007, J. Comput. Phys..

[40]  P. Moinier,et al.  An Unstructured Algorithm for High ReynoldsNumber Flows on Highly-Stretched , 1998 .

[41]  Richard Dwight,et al.  Algebraic multigrid within defect correction for the linearized Euler equations , 2010, Numer. Linear Algebra Appl..

[42]  Jens-Dominik Müller,et al.  Pseudo-timestepping and verification for automatic differentiation derived CFD codes , 2011 .

[43]  Alain Dervieux,et al.  Reverse Automatic Differentiation for Optimum Design: From Adjoint State Assembly to Gradient Computation , 2003, Optim. Methods Softw..

[44]  M. Giles,et al.  Effects of Flow Instabilities on the Linear Analysis of Turbomachinery Aeroelasticity , 2003 .

[45]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .