Contribution of Low-Frequency Motions to Sensible Heat Fluxes over Urban and Suburban Areas

Field observations of the atmospheric boundary layer were made over urban and suburban terrain in the Yangtze River Delta, China. A multiresolution decomposition was applied over three different types of terrain: flat homogeneous terrain, suburban terrain and urban terrain, with results indicating that, (1) the average scale contribution of u, v, w and $$T_{v}$$Tv had a similar variability with length scale for all these three sites respectively, and the dimensionless length scale corresponding to the maximum sensible heat flux contribution increased with the terrain complexity; (2) the length scale corresponding to the maximal average scale contribution for vertical wind velocity $$\lambda _w $$λw was directly proportional to the roughness length $$z_{0}$$z0 in unstable conditions; and (3) the contributions of large-scale motions led to sensible heat fluxes determined with a large-aperture scintillomter being larger than those using the eddy-covariance method for the suburban case, whereas this phenomenon was not substantial for the urban case.

[1]  Edgar L. Andreas,et al.  Estimating Cn 2 over snow and sea ice from meteorological data , 1988 .

[2]  Dean Vickers,et al.  The Cospectral Gap and Turbulent Flux Calculations , 2003 .

[3]  E. Yee,et al.  Multiscaling properties of concentration fluctuations in dispersing plumes revealed using an orthonormal wavelet decomposition , 1996 .

[4]  Andreas Christen,et al.  Coherent structures in urban roughness sublayer turbulence , 2007 .

[5]  Marc B. Parlange,et al.  On the Active Role of Temperature in Surface-Layer Turbulence , 1994 .

[6]  Taiichi Hayashi An analysis of wind velocity fluctuations in the atmospheric surface layer using an orthonormal wavelet transform , 1994 .

[7]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[8]  Chang‐Hoi Ho,et al.  Flux‐gradient relationship of water vapor in the surface layer obtained from CASES‐99 experiment , 2009 .

[9]  Matthias Roth,et al.  Review of atmospheric turbulence over cities , 2007 .

[10]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Brani Vidakovic,et al.  The partitioning of attached and detached eddy motion in the atmospheric surface layer using Lorentz wavelet filtering , 1996 .

[12]  G. R. Ochs,et al.  A saturation-resistant optical scintillometer to measure Cn2† , 1978 .

[13]  L. Mahrt,et al.  An Adaptive Multiresolution Data Filter: Applications to Turbulence and Climatic Time Series , 1994 .

[14]  Jaakko Kukkonen,et al.  On the Temperature Structure Parameter and Sensible Heat Flux over Helsinki from Sonic Anemometry and Scintillometry , 2013 .

[15]  B. Hurk,et al.  A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapour using standard deviation and structure parameter of scalar meteorological quantities , 1993 .

[16]  B. Murthy,et al.  Wavelet Analysis of Intermittent Turbulent Transport in the Atmospheric Surface Layer over a Monsoon Trough Region , 1999 .

[17]  H. S. Zhang,et al.  Comparison of Turbulent Sensible Heat Flux Determined by Large-Aperture Scintillometer and Eddy Covariance over Urban and Suburban Areas , 2014, Boundary-Layer Meteorology.

[18]  Matthias Roth,et al.  Methodological Considerations Regarding the Measurement of Turbulent Fluxes in the Urban Roughness Sublayer: The Role of Scintillometery , 2006 .

[19]  A. Holtslag,et al.  Low-frequency modulation of the atmospheric surface layer over Amazonian rain forest and its implication for similarity relationships , 2006 .

[20]  Jun Zou,et al.  The momentum flux‐gradient relations derived from field measurements in the urban roughness sublayer in three cities in China , 2015 .

[21]  Larry Mahrt,et al.  Eddy Asymmetry in the Sheared Heated Boundary Layer , 1991 .

[22]  B. Vidakovic,et al.  Active Turbulence and Scalar Transport near the Forest–Atmosphere Interface , 1998 .

[23]  Jean-Pierre Lagouarde,et al.  Monitoring the Sensible Heat Flux over Urban Areas using Large Aperture Scintillometry: Case Study of Marseille City During the Escompte Experiment , 2006 .

[24]  M. Wesely,et al.  The Combined Effect of Temperature and Humidity Fluctuations on Refractive Index , 1976 .

[25]  K. J. McAneney,et al.  Large-aperture scintillometry: the homogeneous case , 1995 .

[26]  B. Kruijt,et al.  Scale variability of atmospheric surface layer fluxes of energy and carbon over a tropical rain forest in southwest Amazonia; 1 diurnal conditions , 2002 .

[27]  Y. Malhi,et al.  Low Frequency Atmospheric Transport and Surface Flux Measurements , 2004 .

[28]  Christopher J. Watts,et al.  Derivation of an Effective Height for Scintillometers: La Poza Experiment in Northwest Mexico , 2003 .

[29]  M. Kanda,et al.  Local and Global Similarity in Turbulent Transfer of Heat, Water Vapour, And CO2 in the Dynamic Convective Sublayer Over a Suburban Area , 2006 .

[30]  Celso von Randow,et al.  Exploring eddy-covariance and large-aperture scintillometer measurements in an Amazonian rain forest , 2008 .

[31]  Brani Vidakovic,et al.  Identification of Low-Dimensional Energy Containing / Flux Transporting Eddy Motion in the Atmospheric Surface Layer Using Wavelet Thresholding Methods , 1998 .

[32]  Marc B. Parlange,et al.  Analysis of land surface heat fluxes using the orthonormal wavelet approach , 1995 .

[33]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[34]  Joost C. B. Hoedjes,et al.  Comparison of Large Aperture Scintillometer and Eddy Covariance Measurements: Can Thermal Infrared Data Be Used to Capture Footprint-Induced Differences? , 2007 .

[35]  Joan Cuxart,et al.  CASES-99: a comprehensive investigation of the stable nocturnal boundary layer , 2002 .

[36]  Marc B. Parlange,et al.  Intermittency, local isotropy, and non‐Gaussian statistics in atmospheric surface layer turbulence , 1994 .

[37]  J. Wilczak,et al.  Sonic Anemometer Tilt Correction Algorithms , 2001 .

[38]  G. R. Ochs,et al.  Measuring surface-layer fluxes of heat and momentum using optical scintillation , 1992 .

[39]  R. A. Antonia,et al.  Rough-Wall Turbulent Boundary Layers , 1991 .

[40]  C. A. Vogel,et al.  The turbulent kinetic energy budget in the atmospheric surface layer: A review and an experimental reexamination in the field , 1992 .

[41]  Larry Mahrt,et al.  Multiresolution Flux Decomposition , 1997 .

[42]  A. Held Spectral Analysis of Turbulent Aerosol Fluxes by Fourier Transform, Wavelet Analysis, and Multiresolution Decomposition , 2014, Boundary-Layer Meteorology.

[43]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[44]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .

[45]  L. Mahrt,et al.  The influence of coherent structures and microfronts on scaling laws using global and local transforms , 1994, Journal of Fluid Mechanics.

[46]  T. Oke,et al.  Area-Averaged Sensible Heat Flux and a New Method to Determine Zero-Plane Displacement Length over an Urban Surface using Scintillometry , 2002 .

[47]  O. Hartogensis,et al.  Displaced-Beam Small Aperture Scintillometer Test. Part Ii: Cases-99 Stable Boundary-Layer Experiment , 2002 .

[48]  Stuart A. Collins,et al.  Behavior of the Refractive-Index-Structure Parameter near the Ground* , 1971 .

[49]  Cheng-Hsuan Lu,et al.  Seasonal and diurnal variations of coherent structures over a deciduous forest , 1994 .

[50]  J. Asanuma,et al.  Measurements of regional sensible heat flux over Mongolian grassland using large aperture scintillometer , 2007 .

[51]  C. Grimmond,et al.  Multi-Scale Sensible Heat Fluxes in the Suburban Environment from Large-Aperture Scintillometry and Eddy Covariance , 2014, Boundary-Layer Meteorology.

[52]  Christopher W. Fairall,et al.  Similarity Relationships in the Marine Atmospheric Surface Layer for Terms in the TKE and Scalar Variance Budgets , 1998 .

[53]  J. Hoedjes,et al.  Determination of Area-Averaged Sensible Heat Fluxes with a Large Aperture Scintillometer over a Heterogeneous Surface – Flevoland Field Experiment , 2002 .

[54]  F. Beyrich,et al.  Towards a Validation of Scintillometer Measurements: The LITFASS-2009 Experiment , 2012, Boundary-Layer Meteorology.

[55]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[56]  Siegfried Raasch,et al.  LES Study of the Energy Imbalance Problem with Eddy Covariance Fluxes , 2004 .

[57]  S. Galle,et al.  Combined analysis of energy and water balances to estimate latent heat flux of a sudanian small catchment , 2009 .

[58]  E. DAYTIME TURBULENT EXCHANGE BETWEEN THE AMAZON FOREST AND THE ATMOSPHERE , 2003 .

[59]  Jun Ho Lee,et al.  Estimation of turbulent sensible heat and momentum fluxes over a heterogeneous urban area using a large aperture scintillometer , 2015, Advances in Atmospheric Sciences.

[60]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[61]  G. Katul,et al.  Low Dimensional Turbulent Transport Mechanics Near the Forest-Atmosphere Interface , 1999 .

[62]  A. Mueller Atmospheric Boundary Layer Flows Their Structure And Measurement , 2016 .

[63]  Jan M. H. Hendrickx,et al.  New Mexico Scintillometer Network: Supporting Remote Sensing and Hydrologic and Meteorological Models , 2009 .

[64]  V. Thiermann,et al.  The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation , 1992 .

[65]  Marie Farge,et al.  Wavelet transform and their application to turbulence , 1992 .