Yield line mechanism analysis of steel members and connections

Yield line mechanism analysis has been widely used to study steel members and connections that involve local collapse mechanisms. In the application of the yield line method, a fundamental requirement is to determine the reduced plastic moment capacity of an inclined yield line under axial force. This paper reviews various theories dealing with inclined yield lines. Comparisons between these theories are presented. The paper also summarizes some basic or simple yield line mechanisms that may be adopted directly to solve more complicated problems. The application of yield line mechanism analysis is included, covering steel plates, open-section members, closed-section members, void-filled members, welded connections and bolted connections. It is shown that this method can be used to study post-collapse behaviour, load-carrying capacity, ductility, rotation capacity and energy absorption.

[1]  N. Kosteski,et al.  A finite element method based yield load determination procedure for hollow structural section connections , 2003 .

[2]  F Espiga Ductility assessment methods and safety evaluation based on rotation capacity approach , 1998 .

[3]  Jeffrey A. Packer,et al.  Ultimate Strength of Gapped Joints in RHS Trusses , 1982 .

[4]  Maria Kotelko,et al.  Collapse behaviour of triangular cross-section girders subject to pure bending , 1993 .

[5]  Raphael H. Grzebieta,et al.  Plastic mechanism analysis of circular tubes under pure bending , 2002 .

[6]  Thomas Murray,et al.  Design Model for Bolted Moment End Plate Connections Joining Rectangular Hollow Sections , 1998 .

[7]  Gregory J. Hancock,et al.  A theoretical analysis of the plastic-moment capacity of an inclined yield line under axial force , 1993 .

[8]  Kim J.R. Rasmussen,et al.  Buckling analysis of thin‐walled structures: Analytical developments and applications , 1998 .

[9]  J. E. Harding,et al.  A plastic collapse mechanism for the tripping behaviour of flat-bar ring stiffeners in cylindrical shells subject to external pressure , 1994 .

[10]  N. K. Gupta,et al.  IMPLAST symposia and large deformations—a perspective , 2002 .

[11]  T. Wierzbicki,et al.  On the Crushing Mechanics of Thin-Walled Structures , 1983 .

[12]  Dana Petcu,et al.  Available rotation capacity of wide-flange beams and beam-columns Part 1. Theoretical approaches , 1997 .

[13]  S. K. Tsang,et al.  A plastic mechanism formulation for the general instability of ring-stiffened cylinders under pressure-dominated loadings , 1985 .

[14]  Xiao Ling Zhao,et al.  Square and Rectangular Hollow Sections under Transverse End-Bearing Force , 1995 .

[15]  T. Wierzbicki,et al.  Axial Crushing of Multicorner Sheet Metal Columns , 1989 .

[16]  Mahen Mahendran,et al.  Local plastic mechanisms in thin steel plates under in-plane compression , 1997 .

[17]  James Rhodes,et al.  Buckling of thin plates and members - and early work on rectangular tubes , 2002 .

[18]  Mahen Mahendran,et al.  Ultimate load behaviour of box-columns under combined loading of axial compression and torsion , 1990 .

[19]  Carlo Poggi,et al.  Collapse strength of unstiffened conical shells under axial compression , 2001 .

[20]  Kim J.R. Rasmussen,et al.  Nonlinear analyses of thin-walled channel section columns , 1992 .

[21]  Gregory J. Hancock,et al.  Experimental verification of the theory of plastic-moment capacity of an inclined yield line under axial force , 1992 .

[22]  R. G. Beale,et al.  A theoretical and experimental investigation into cold-formed channel sections in bending with the unstiffened flanges in compression , 2001 .

[23]  N. K. Gupta,et al.  An analysis of axi-symmetric axial collapse of round tubes , 1995 .

[24]  N K Gupta,et al.  Lateral compression of empty and filled single tubes by short width indenters , 2000 .

[25]  Ko Kemp,et al.  AN ANALYSIS OF THE FAILURE OF AN AXIALLY LOADED SIMPLY SUPPORTED STEEL PLATE. , 1975 .

[26]  A. Andronicou,et al.  A plastic collapse mechanism for cylinders under uniaxial end compression , 1981 .

[27]  Isao Nishiyama,et al.  T-joints Made of Rectangular Tubes , 1980 .

[28]  Noel W. Murray,et al.  Introduction to the theory of thin-walled structures , 1984 .

[29]  M. Kotełko Selected problems of collapse behaviour analysis of structural members built from strain-hardening material , 1998 .

[30]  Jeffrey A. Packer,et al.  Yield line analysis of RHS connections with axial loads , 1998 .

[31]  Dušan Kecman,et al.  Bending collapse of rectangular and square section tubes , 1983 .

[32]  James Rhodes,et al.  Post-failure behaviour of box section beams under pure bending (an experimental study) , 2000 .

[33]  Heung-Soo Kim,et al.  Biaxial bending collapse of thin-walled beams filled partially or fully with aluminium foam , 2000 .

[34]  Tomasz Wierzbicki,et al.  Effect of an ultralight metal filler on the bending collapse behavior of thin-walled prismatic columns , 1999 .

[35]  Jan W. B. Stark,et al.  Welded Connections in Cold-formed Sections , 1980 .

[36]  Byung Chai Lee,et al.  Prediction of bending collapse behaviours of thin-walled open section beams , 1996 .

[37]  W. Abramowicz,et al.  Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically , 1997 .

[38]  T. M. Roberts,et al.  STRENGTH OF WEBS SUBJECTED TO COMPRESSIVE EDGE LOADING , 1997 .

[39]  Tomasz Wierzbicki,et al.  Crushing damage of web girders under localized static loads , 1995 .

[40]  N. W. Murray The buckling of a pin-ended column of rectangular cross-section and strain hardening mild steel into the large-deflection range , 1992 .

[41]  Dana Petcu,et al.  Available rotation capacity of wide-flange beams and beam-columns Part 2. Experimental and numerical tests , 1997 .

[42]  V Gioncu Framed structures. Ductility and seismic response , 2000 .

[43]  C. K. Soh,et al.  Limit Analysis of Ultimate Strength of Tubular X-Joints , 2000 .

[44]  Tomasz Wierzbicki,et al.  Initiation of plastic folding mechanism in crushed box columns , 1992 .

[45]  Archibald N. Sherbourne,et al.  Strength Predictions of Plates in Uniaxial Compression , 1972 .

[46]  N. W. Murray,et al.  Some basic plastic mechanisms in the local buckling of thin-walled steel structures , 1981 .

[47]  Ben Kato,et al.  BOLTED TENSION FLANGES JOINING CIRCULAR HOLLOW SECTION MEMBERS , 1985 .

[48]  W. Abramowicz,et al.  Axial crushing of foam-filled columns , 1988 .

[49]  Raphael H. Grzebieta An alternative method for determining the behaviour of round stocky tubes subjected to an axial crush load , 1990 .

[50]  Raphael H. Grzebieta,et al.  Plastic mechanism analysis of concrete-filled double-skin (SHS inner and SHS outer) stub columns , 2002 .

[51]  Raphael H. Grzebieta,et al.  Plastic Collapse Analysis of Slender Circular Tubes Subjected to Large Deformation Pure Bending , 2002 .

[52]  J. A. Packer,et al.  Design Guidelines for Longitudinal Plate to HSS Connections , 1998 .

[53]  Hani S. Mitri,et al.  Plate reinforced square hollow section T-joints of unequal width , 1982 .

[54]  A. Jennings On the identification of yield-line collapse mechanisms , 1996 .