Structural insights into the inhibition of glycine reuptake

[1]  Oded Lewinson,et al.  Structures of ABC transporters: handle with care , 2020, FEBS letters.

[2]  L. Forrest,et al.  Chloride-dependent conformational changes in the GlyT1 glycine transporter , 2020, Proceedings of the National Academy of Sciences.

[3]  Michael V. LeVine,et al.  X-ray structure of LeuT in an inward-facing occluded conformation reveals mechanism of substrate release , 2020, Nature Communications.

[4]  Randy J. Read,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[5]  W. Guba,et al.  Structural Basis for Allosteric Ligand Recognition in the Human CC Chemokine Receptor 7 , 2019, Cell.

[6]  E. Gouaux,et al.  Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport , 2019, Nature.

[7]  Simon C. Potter,et al.  The EMBL-EBI search and sequence analysis tools APIs in 2019 , 2019, Nucleic Acids Res..

[8]  Michael V. LeVine,et al.  The allosteric mechanism of substrate-specific transport in SLC6 is mediated by a volumetric sensor , 2019, Proceedings of the National Academy of Sciences.

[9]  G. McCarthy,et al.  Dose-Related Target Occupancy and Effects on Circuitry, Behavior, and Neuroplasticity of the Glycine Transporter-1 Inhibitor PF-03463275 in Healthy and Schizophrenia Subjects , 2018, Biological Psychiatry.

[10]  E. Pinard,et al.  Glycine Transporter Type I (GlyT1) Inhibitor, Bitopertin: A Journey from Lab to Patient. , 2018, Chimia.

[11]  Tristan Ian Croll,et al.  ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps , 2018, Acta crystallographica. Section D, Structural biology.

[12]  C. Cioffi Glycine transporter-1 inhibitors: a patent review (2011–2016) , 2018, Expert opinion on therapeutic patents.

[13]  T. Singer,et al.  Brain Shuttle Antibody for Alzheimer's Disease with Attenuated Peripheral Effector Function due to an Inverted Binding Mode. , 2018, Cell reports.

[14]  R. Vandenberg,et al.  Molecular Determinants for Substrate Interactions with the Glycine Transporter GlyT2. , 2017, ACS chemical neuroscience.

[15]  M. Seeger,et al.  Synthetic single domain antibodies for the conformational trapping of membrane proteins , 2017, bioRxiv.

[16]  S. Lawrie,et al.  Bitopertin in Negative Symptoms of Schizophrenia—Results From the Phase III FlashLyte and DayLyte Studies , 2017, Biological Psychiatry.

[17]  P. Nissen,et al.  A conserved leucine occupies the empty substrate site of LeuT in the Na+-free return state , 2016, Nature Communications.

[18]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[19]  E. Gouaux,et al.  X-ray structures and mechanism of the human serotonin transporter , 2016, Nature.

[20]  A. N. Popov,et al.  MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines , 2015, Acta crystallographica. Section D, Biological crystallography.

[21]  J. Javitch,et al.  A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters , 2014, Nature Structural &Molecular Biology.

[22]  Benoît Roux,et al.  Conformational dynamics of ligand-dependent alternating access in LeuT , 2014, Nature Structural &Molecular Biology.

[23]  Henry N. Chapman,et al.  Serial crystallography on in vivo grown microcrystals using synchrotron radiation , 2014, IUCrJ.

[24]  B. Yee,et al.  Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain , 2013, Nature Reviews Drug Discovery.

[25]  Eric Gouaux,et al.  X-ray structure of dopamine transporter elucidates antidepressant mechanism , 2013, Nature.

[26]  H. Weinstein,et al.  Chloride binding site of neurotransmitter sodium symporters , 2013, Proceedings of the National Academy of Sciences.

[27]  James Robert Brašić,et al.  Glycine Transporter Type 1 Occupancy by Bitopertin: a Positron Emission Tomography Study in Healthy Volunteers , 2013, Neuropsychopharmacology.

[28]  Eric Gouaux,et al.  A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. , 2012, Structure.

[29]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[30]  Götz Schlotterbeck,et al.  Glycine reuptake inhibitor RG1678: A pharmacologic characterization of an investigational agent for the treatment of schizophrenia , 2012, Neuropharmacology.

[31]  V. Eulenburg,et al.  Lidocaine Metabolites Inhibit Glycine Transporter 1: A Novel Mechanism for the Analgesic Action of Systemic Lidocaine? , 2012, Anesthesiology.

[32]  U. Gether,et al.  SLC6 Neurotransmitter Transporters: Structure, Function, and Regulation , 2011, Pharmacological Reviews.

[33]  Christophe Briand,et al.  Designed ankyrin repeat protein binders for the crystallization of AcrB: plasticity of the dominant interface. , 2011, Journal of structural biology.

[34]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[35]  Markus Bender,et al.  Discovery of benzoylisoindolines as a novel class of potent, selective and orally active GlyT1 inhibitors. , 2010, Bioorganic & medicinal chemistry letters.

[36]  D. Javitt,et al.  N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: The final common pathway on the road to schizophrenia? , 2010, Brain Research Bulletin.

[37]  Alexander Alanine,et al.  Selective GlyT1 inhibitors: discovery of [4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl][5-methanesulfonyl-2-((S)-2,2,2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a promising novel medicine to treat schizophrenia. , 2010, Journal of medicinal chemistry.

[38]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[39]  W. Kabsch XDS , 2010, Acta crystallographica. Section D, Biological crystallography.

[40]  E. Wright,et al.  Structure and function of Na(+)-symporters with inverted repeats. , 2009, Current opinion in structural biology.

[41]  Min Zhou,et al.  Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions , 2009, Nature Methods.

[42]  R. Hoffman,et al.  Neuroplasticity as a target for the pharmacotherapy of anxiety disorders, mood disorders, and schizophrenia. , 2009, Drug discovery today.

[43]  Markus A Seeger,et al.  Molecular basis of multidrug transport by ABC transporters. , 2009, Biochimica et biophysica acta.

[44]  Eric Gouaux,et al.  A Competitive Inhibitor Traps LeuT in an Open-to-Out Conformation , 2008, Science.

[45]  L. Federici,et al.  Functional role of transmembrane helix 6 in drug binding and transport by the ABC transporter MsbA. , 2008, Biochemistry.

[46]  K. Diederichs,et al.  The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance. , 2008, Current drug targets.

[47]  Roberto Mosca,et al.  RAPIDO: a web server for the alignment of protein structures in the presence of conformational changes , 2008, Nucleic Acids Res..

[48]  R. Stevens,et al.  Microscale fluorescent thermal stability assay for membrane proteins. , 2008, Structure.

[49]  K. Diederichs,et al.  Supplementary materials for : Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB , 2007 .

[50]  Yuan-Wei Zhang,et al.  Ibogaine, a Noncompetitive Inhibitor of Serotonin Transport, Acts by Stabilizing the Cytoplasm-facing State of the Transporter* , 2007, Journal of Biological Chemistry.

[51]  B. Kee,et al.  Potentiation of the NMDA receptor in the treatment of schizophrenia: focused on the glycine site , 2007, European Archives of Psychiatry and Clinical Neuroscience.

[52]  Eric Gouaux,et al.  Antidepressant binding site in a bacterial homologue of neurotransmitter transporters , 2007, Nature.

[53]  R. Vandenberg,et al.  Molecular Basis for Substrate Discrimination by Glycine Transporters* , 2007, Journal of Biological Chemistry.

[54]  P. Hawkins,et al.  Comparison of shape-matching and docking as virtual screening tools. , 2007, Journal of medicinal chemistry.

[55]  B. Cubelos,et al.  The scaffolding protein PSD‐95 interacts with the glycine transporter GLYT1 and impairs its internalization , 2005, Journal of neurochemistry.

[56]  B. Cubelos,et al.  Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. , 2005, Cerebral cortex.

[57]  D. Richter,et al.  Inactivation of the Glycine Transporter 1 Gene Discloses Vital Role of Glial Glycine Uptake in Glycinergic Inhibition , 2003, Neuron.

[58]  M. Seeger,et al.  Cloning of Baeyer-Villiger monooxygenases from Comamonas, Xanthobacter and Rhodococcus using polymerase chain reaction with highly degenerate primers. , 2003, Environmental microbiology.

[59]  R. McGuire,et al.  The first potent and selective inhibitors of the glycine transporter type 2. , 2001, Journal of medicinal chemistry.

[60]  G. Walker,et al.  Discovery and SAR of org 24598-a selective glycine uptake inhibitor. , 2001, Bioorganic & medicinal chemistry letters.

[61]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[62]  P. Andrew Karplus,et al.  Improved R-factors for diffraction data analysis in macromolecular crystallography , 1997, Nature Structural Biology.

[63]  C. Giménez,et al.  The Role of N-Glycosylation in the Targeting and Activity of the GLYT1 Glycine Transporter (*) , 1995, The Journal of Biological Chemistry.

[64]  E. Gundelfinger,et al.  The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors , 1987, Nature.

[65]  P. Ascher,et al.  Glycine potentiates the NMDA response in cultured mouse brain neurons , 1987, Nature.

[66]  O. Jardetzky,et al.  Simple Allosteric Model for Membrane Pumps , 1966, Nature.