On the Convergence of Rational Ritz Values
暂无分享,去创建一个
[1] E. Saff,et al. Logarithmic Potentials with External Fields , 1997 .
[2] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[3] Tobin A. Driscoll,et al. From Potential Theory to Matrix Iterations in Six Steps , 1998, SIAM Rev..
[4] Arno B. J. Kuijlaars,et al. Zero distributions for discrete orthogonal polynomials , 1998 .
[5] Arno B. J. Kuijlaars,et al. Superlinear CG convergence for special right-hand sides , 2002 .
[6] G. Szegő,et al. On the Eigen-Values of Certain Hermitian Forms , 1953 .
[7] Dario Fasino. Rational Krylov matrices and QR steps on Hermitian diagonal-plus-semiseparable matrices , 2005, Numer. Linear Algebra Appl..
[8] Karl Meerbergen,et al. Using Generalized Cayley Transformations within an Inexact Rational Krylov Sequence Method , 1998, SIAM J. Matrix Anal. Appl..
[9] Edward B. Saff,et al. Potential theoretic tools in polynomial and rational approximation , 2006 .
[10] L. Knizhnerman,et al. Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..
[11] Stefano Serra Capizzano,et al. On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..
[12] Axel Ruhe. Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .
[13] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[14] B. Beckermann. Discrete orthogonal polynomials and superlinear convergence of Krylov subspace methods in numerical linear algebra , 2006 .
[15] Adhemar Bultheel,et al. RATIONAL KRYLOV SEQUENCES AND ORTHOGONAL RATIONAL FUNCTIONS , 2008 .
[16] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[17] Arno B. J. Kuijlaars,et al. Extremal Polynomials on Discrete Sets , 1999 .
[18] Karl Meerbergen,et al. Changing poles in the rational Lanczos method for the Hermitian eigenvalue problem , 2001, Numer. Linear Algebra Appl..
[19] Axel Ruhe. The rational Krylov algorithm for nonsymmetric eigenvalue problems. III: Complex shifts for real matrices , 1994 .
[20] E. Rakhmanov,et al. Families of equilibrium measures in an external field on the real axis , 1999 .
[21] R. Vandebril,et al. Matrix Computations and Semiseparable Matrices , 2007 .
[22] Y. Okumura. Note on the $N=2$ super Yang-Mills gauge theory in a noncommutative differential geometry , 1998 .
[23] I. Gohberg,et al. The QR iteration method for Hermitian quasiseparable matrices of an arbitrary order , 2005 .
[24] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[25] L. Gemignani,et al. Matrix Computations and Semiseparable Matrices. Volume I: Linear Systems, R. Vandebril, M. Van Barel, N. Mastronardi , 2010 .
[26] Arno B. J. Kuijlaars,et al. On The Sharpness of an Asymptotic Error Estimate for Conjugate Gradients , 2001 .
[27] J. Coussement,et al. A continuum limit of the relativistic Toda lattice: asymptotic theory of discrete Laurent orthogonal polynomials with varying recurrence coefficients , 2005 .
[28] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[29] Bernhard Beckermann,et al. A note on the convergence of Ritz values for sequences of matrices , 2000 .
[30] Thomas Ransford,et al. Potential Theory in the Complex Plane: Bibliography , 1995 .
[31] Bernhard Beckermann,et al. On a Conjecture of E. A. Rakhmanov , 2000 .
[32] Marc Van Barel,et al. Convergence of the Isometric Arnoldi Process , 2005, SIAM J. Matrix Anal. Appl..
[33] E. Rakhmanov,et al. Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable , 1996 .
[34] Arno B. J. Kuijlaars,et al. Which Eigenvalues Are Found by the Lanczos Method? , 2000, SIAM J. Matrix Anal. Appl..
[35] Arno B. J. Kuijlaars,et al. Superlinear Convergence of Conjugate Gradients , 2001, SIAM J. Numer. Anal..
[36] Israel Gohberg,et al. On the fast reduction of a quasiseparable matrix to Hessenberg and tridiagonal forms , 2007 .
[37] Edward B. Saff,et al. Constrained energy problems with applications to orthogonal polynomials of a discrete variable , 1997 .
[38] Arno B. J. Kuijlaars,et al. Convergence Analysis of Krylov Subspace Iterations with Methods from Potential Theory , 2006, SIAM Rev..
[39] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[40] Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation , 1984 .
[41] K. Meerbergen,et al. The implicit application of a rational filter in the RKS method , 1997 .