A General Point-Based Method for Self-Calibration of Terrestrial Laser Scanners Considering Stochastic Information

[1]  Derek D. Lichti,et al.  An on-site approach for the self-calibration of terrestrial laser scanner , 2014 .

[2]  V. Wichmann,et al.  Derivation of tree skeletons and error assessment using LiDAR point cloud data of varying quality , 2013 .

[3]  Derek D. Lichti,et al.  Error modelling, calibration and analysis of an AM–CW terrestrial laser scanner system , 2007 .

[4]  Bo Wang,et al.  A multi-position self-calibration method for dual-axis rotational inertial navigation system , 2014 .

[5]  Derek D. Lichti,et al.  A rigorous cylinder-based self-calibration approach for terrestrial laser scanners , 2015 .

[6]  P. Teunissen,et al.  Least-squares variance component estimation , 2008 .

[7]  José Luis Lerma,et al.  Self-calibration of terrestrial laser scanners: selection of the best geometric additional parameters , 2014 .

[8]  Derek D. Lichti,et al.  Parameter de-correlation and model-identification in hybrid-style terrestrial laser scanner self-calibration , 2011 .

[9]  Bin Wang,et al.  Generalized total least squares prediction algorithm for universal 3D similarity transformation , 2017 .

[10]  C. Hancock,et al.  A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures , 2016 .

[11]  Derek D. Lichti Terrestrial laser scanner self-calibration: Correlation sources and their mitigation , 2010 .

[12]  Derek D. Lichti,et al.  Point-Based Versus Plane-Based Self-Calibration of Static Terrestrial Laser Scanners , 2012 .

[13]  D. Lague,et al.  Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z) , 2013, 1302.1183.

[14]  M. Vastaranta,et al.  Terrestrial laser scanning in forest inventories , 2016 .

[15]  D González-Aguilera,et al.  Trimble GX200 and Riegl LMS-Z390i sensor self-calibration. , 2011, Optics express.

[16]  Tao Zhou,et al.  Total least-squares EIO model, algorithms and applications , 2019, Geodesy and Geodynamics.

[17]  F. Neitzel Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation , 2010 .

[18]  Yuriy Reshetyuk,et al.  CALIBRATION OF TERRESTRIAL LASER SCANNERS CALLIDUS 1.1, LEICA HDS 3000 AND LEICA HDS 2500 , 2006 .

[19]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  Benachir Medjdoub,et al.  As-Built 3D Heritage City Modelling to Support Numerical Structural Analysis: Application to the Assessment of an Archaeological Remain , 2019, Remote. Sens..

[21]  Bofeng Li,et al.  An iterative solution of weighted total least-squares adjustment , 2011 .

[22]  Jens-André Paffenholz,et al.  High-Precision 3D Object Capturing with Static and Kinematic Terrestrial Laser Scanning in Industrial Applications - Approaches of Quality Assessment , 2020, Remote. Sens..

[23]  Heiner Kuhlmann,et al.  Empirical stochastic model of detected target centroids: Influence on registration and calibration of terrestrial laser scanners , 2019, Journal of Applied Geodesy.

[24]  Yuriy Reshetyuk A unified approach to self-calibration of terrestrial laser scanners , 2010 .

[25]  Burkhard Schaffrin,et al.  Reliability Measures for Correlated Observations , 1997 .

[26]  Jie Wu,et al.  Dimensional accuracy and structural performance assessment of spatial structure components using 3D laser scanning , 2018, Automation in Construction.

[27]  Burkhard Schaffrin,et al.  Total Least-Squares regularization of Tykhonov type and an ancient racetrack in Corinth , 2010 .