A class of traceability codes

Traceability codes are identifiable parent property (IPP) codes with the additional requirement that the Hamming distance can be used to trace a parent of a word. Traceability codes can be used for constructing digital fingerprints in order to deter users from illegally copying digital data. We construct a class of traceability codes and determine the exact parameters of some of the codes in this class.

[1]  Douglas R. Stinson,et al.  Combinatorial Properties and Constructions of Traceability Schemes and Frameproof Codes , 1998, SIAM J. Discret. Math..

[2]  Jean-Paul M. G. Linnartz,et al.  On Codes with the Identifiable Parent Property , 1998, J. Comb. Theory, Ser. A.

[3]  Catherine A. Meadows,et al.  Fingerprinting Long Forgiving Messages , 1985, CRYPTO.

[4]  Jessica Staddon,et al.  Combinatorial properties of frameproof and traceability codes , 2001, IEEE Trans. Inf. Theory.

[5]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[6]  Dan Collusion-Secure Fingerprinting for Digital Data , 2002 .

[7]  Josef Pieprzyk,et al.  Fingerprints for Copyright Software Protection , 1999, ISW.

[8]  Tina Lindkvist,et al.  Fingerprinting of digital documents , 1999 .

[9]  Douglas R. Stinson,et al.  Secure frameproof codes, key distribution patterns, group testing algorithms and related structures , 2000 .

[10]  Gérard D. Cohen,et al.  A Hypergraph Approach to the Identifying Parent Property: The Case of Multiple Parents , 2001, SIAM J. Discret. Math..

[11]  R. L. Fountain,et al.  The fingerprinted database , 1990, [1990] Proceedings. Sixth International Conference on Data Engineering.

[12]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[13]  Gérard D. Cohen,et al.  A hypergraph approach to the identifying parent property: the case of multiple parents , 2001, Electron. Notes Discret. Math..