A Fuzzy-Based Congestion Control Scheme for Vehicular Adhoc Network Communication

Vehicular ad hoc network (VANET) is a self-organized, multi-purpose, service-oriented communication network that enables communication between vehicles and between vehicles and roadside infrastructures for the purpose of exchanging messages. In a dense traffic scenario, the message traffic may generate a load higher than the available capacity of the transmission medium leading to channel congestion problem. This situation leads to a rise in packet loss rates and transmission delay. Some existing congestion control schemes adapt the transmission power, transmission rate, and contention window parameters by making comparison with neighboring values through classical logic. However, the approach does not consider points between two close parameter values. This work uses fuzzy logic to improve the adaptation process of the network contention window parameter. The proposed scheme achieved a 15% higher in-packet delivery ratio and 10ms faster transmission compared with related work in terms end-to-end delay.