Biophysically motivated regulatory network inference: progress and prospects

Thanks to the confluence of genomic technology and computational developments, the possibility of network inference methods that automatically learn large comprehensive models of cellular regulation is closer than ever. This perspective focuses on enumerating the elements of computational strategies that, when coupled to appropriate experimental designs, can lead to accurate large-scale models of chromatin state and transcriptional regulatory structure and dynamics. We highlight 4 research questions that require further investigation in order to make progress in network inference: (1) using overall constraints on network structure such as sparsity, (2) use of informative priors and data integration to constrain individual model parameters, (3) estimation of latent regulatory factor activity under varying cell conditions, and (4) new methods for learning and modeling regulatory factor interactions. We conclude that methods combining advances in these 4 categories of required effort with new genomic technologies will result in biophysically motivated dynamic genome-wide regulatory network models for several of the best-studied organisms and cell types.

[1]  Neil D. Lawrence,et al.  Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities , 2006, Bioinform..

[2]  Elhanan Borenstein,et al.  Conservation of trans-acting circuitry during mammalian regulatory evolution , 2014, Nature.

[3]  Edward R. Dougherty,et al.  Inference of Boolean Networks Using Sensitivity Regularization , 2008, EURASIP J. Bioinform. Syst. Biol..

[4]  Ron Shamir,et al.  EXPANDER – an integrative program suite for microarray data analysis , 2005, BMC Bioinformatics.

[5]  Edgar Wingender,et al.  TRANSPATH®: a high quality database focused on signal transduction : Data integration in functional genomics and proteomics: application to biological pathways , 2004 .

[6]  J Madsen,et al.  Limits on a muon flux from neutralino annihilations in the sun with the IceCube 22-string detector. , 2009, Physical review letters.

[7]  Nathan C. Sheffield,et al.  Predicting cell-type–specific gene expression from regions of open chromatin , 2012, Genome research.

[8]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[9]  Eric H Davidson,et al.  Modeling DNA sequence-based cis-regulatory gene networks. , 2002, Developmental biology.

[10]  Neil D. Lawrence,et al.  Genome-wide modeling of transcription kinetics reveals patterns of RNA production delays , 2015, Proceedings of the National Academy of Sciences.

[11]  Ting Chen,et al.  Modeling Gene Expression with Differential Equations , 1998, Pacific Symposium on Biocomputing.

[12]  Antti Honkela,et al.  Model-based method for transcription factor target identification with limited data , 2010, Proceedings of the National Academy of Sciences.

[13]  I. Amit,et al.  Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the Local Microenvironment , 2014, Cell.

[14]  Chiara Sabatti,et al.  Network component analysis: Reconstruction of regulatory signals in biological systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Eric S. Lander,et al.  Hi-C: A Method to Study the Three-dimensional Architecture of Genomes. , 2010, Journal of visualized experiments : JoVE.

[16]  B. Schwikowski,et al.  Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis , 2012, Science.

[17]  James C Liao,et al.  Inferring yeast cell cycle regulators and interactions using transcription factor activities , 2005, BMC Genomics.

[18]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[19]  J. Stamatoyannopoulos,et al.  Dynamics of chromatin accessibility and long-range interactions in response to glucocorticoid pulsing , 2015, Genome research.

[20]  David H. Wolpert,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996, Neural Computation.

[21]  Richard Bonneau Learning biological networks: from modules to dynamics. , 2008, Nature chemical biology.

[22]  Ana I. Domingos,et al.  An IL-23R/IL-22 Circuit Regulates Epithelial Serum Amyloid A to Promote Local Effector Th17 Responses , 2015, Cell.

[23]  Joseph T. Chang,et al.  Spectral biclustering of microarray data: coclustering genes and conditions. , 2003, Genome research.

[24]  San Cristóbal Mateo,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996 .

[25]  K. Marchal,et al.  Inferring the transcriptional network of Bacillus subtilis. , 2009, Molecular bioSystems.

[26]  D. Floreano,et al.  Revealing strengths and weaknesses of methods for gene network inference , 2010, Proceedings of the National Academy of Sciences.

[27]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[28]  Jussi Taipale,et al.  Conservation of transcription factor binding specificities across 600 million years of bilateria evolution , 2015, eLife.

[29]  Ilya Shmulevich,et al.  Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks , 2006, Signal Process..

[30]  Aviv Regev,et al.  Comparative analysis of gene regulatory networks: from network reconstruction to evolution. , 2015, Annual review of cell and developmental biology.

[31]  Richard Bonneau,et al.  Comparative Microbial Modules Resource: Generation and Visualization of Multi-species Biclusters , 2011, PLoS Comput. Biol..

[32]  Nir Friedman,et al.  Inferring quantitative models of regulatory networks from expression data , 2004, ISMB/ECCB.

[33]  Raphael H. Michna,et al.  SubtiWiki 2.0—an integrated database for the model organism Bacillus subtilis , 2015, Nucleic Acids Res..

[34]  M. Gustafsson,et al.  Constructing and analyzing a large-scale gene-to-gene regulatory network Lasso-constrained inference and biological validation , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[35]  Feng Gao,et al.  Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data , 2004, BMC Bioinformatics.

[36]  Holger Karas,et al.  TRANSFAC: a database on transcription factors and their DNA binding sites , 1996, Nucleic Acids Res..

[37]  Gregory Stephanopoulos,et al.  Elucidation of gene interaction networks through time-lagged correlation analysis of transcriptional data. , 2004, Genome research.

[38]  Wing-Kin Sung,et al.  ChIA-PET analysis of transcriptional chromatin interactions. , 2012, Methods.

[39]  Gabriel Kreiman,et al.  Integrated genome analysis suggests that most conserved non-coding sequences are regulatory factor binding sites , 2012, Nucleic acids research.

[40]  Zalmiyah Zakaria,et al.  A review on the computational approaches for gene regulatory network construction , 2014, Comput. Biol. Medicine.

[41]  Christopher S. Poultney,et al.  One third of dynamic protein expression profiles can be predicted by a simple rate equation. , 2014, Molecular bioSystems.

[42]  Christian L. Müller,et al.  Fused Regression for Multi-source Gene Regulatory Network Inference , 2016, bioRxiv.

[43]  L. MacNeil,et al.  Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. , 2011, Genome research.

[44]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[45]  Richard Bonneau,et al.  Learning global models of transcriptional regulatory networks from data. , 2009, Methods in molecular biology.

[46]  Pedro P. Rocha,et al.  Breaking TADs: insights into hierarchical genome organization. , 2015, Epigenomics.

[47]  Fang-Xiang Wu,et al.  A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets , 2014, BMC Systems Biology.

[48]  Roded Sharan,et al.  Discovering statistically significant biclusters in gene expression data , 2002, ISMB.

[49]  Srinivas Aluru,et al.  Handbook Of Computational Molecular Biology , 2010 .

[50]  J. Hasty,et al.  Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[52]  R. Myers,et al.  Dynamic MicroRNA Gene Transcription and Processing during T Cell Development , 2012, The Journal of Immunology.

[53]  Raphael H. Michna,et al.  SubtiWiki–a database for the model organism Bacillus subtilis that links pathway, interaction and expression information , 2013, Nucleic Acids Res..

[54]  Srinivas Aluru Handbook of Computational Molecular Biology (Chapman & All/Crc Computer and Information Science Series) , 2005 .

[55]  T R Hughes,et al.  A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. , 2011, Sub-cellular biochemistry.

[56]  M. Selbach,et al.  Global analysis of cellular protein translation by pulsed SILAC , 2009, Proteomics.

[57]  Emily R. Miraldi,et al.  CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22 , 2014, The Journal of experimental medicine.

[58]  Sach Mukherjee,et al.  Network inference using informative priors , 2008, Proceedings of the National Academy of Sciences.

[59]  William Stafford Noble,et al.  Machine learning applications in genetics and genomics , 2015, Nature Reviews Genetics.

[60]  David J. Reiss,et al.  Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks , 2006, BMC Bioinformatics.

[61]  Julie L. Yang,et al.  Affinity regression predicts the recognition code of nucleic acid binding proteins , 2015, Nature Biotechnology.

[62]  Joonsoo Kang,et al.  Immunological Genome Project and systems immunology. , 2013, Trends in immunology.

[63]  Vwani P. Roychowdhury,et al.  A generalized framework for network component analysis , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[64]  Christopher A. Penfold,et al.  Inferring orthologous gene regulatory networks using interspecies data fusion , 2015, Bioinform..

[65]  Richard Bonneau,et al.  The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo , 2006, Genome Biology.

[66]  Shane J. Neph,et al.  Developmental Fate and Cellular Maturity Encoded in Human Regulatory DNA Landscapes , 2013, Cell.

[67]  Richard Bonneau,et al.  Integrated inference and analysis of regulatory networks from multi-level measurements. , 2012, Methods in cell biology.

[68]  David Z. Chen,et al.  Architecture of the human regulatory network derived from ENCODE data , 2012, Nature.

[69]  Dmitry A Rodionov,et al.  Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. , 2007, Chemical reviews.

[70]  Jesper Tegnér,et al.  Reverse engineering gene networks using singular value decomposition and robust regression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Neil D. Lawrence,et al.  Inference of RNA Polymerase II Transcription Dynamics from Chromatin Immunoprecipitation Time Course Data , 2013, PLoS Comput. Biol..

[72]  Haiyan Huang,et al.  Review on statistical methods for gene network reconstruction using expression data. , 2014, Journal of theoretical biology.

[73]  Pedro P. Rocha,et al.  CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation , 2015, Science.

[74]  Julio Collado-Vides,et al.  RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions , 2005, Nucleic Acids Res..

[75]  Juan M. Vaquerizas,et al.  Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. , 2010, Genome research.

[76]  Chen Dong,et al.  STAT3 Regulates Cytokine-mediated Generation of Inflammatory Helper T Cells* , 2007, Journal of Biological Chemistry.

[77]  Shane J. Neph,et al.  Circuitry and Dynamics of Human Transcription Factor Regulatory Networks , 2012, Cell.

[78]  Gabriel Kreiman,et al.  Conservation of transcription factor binding events predicts gene expression across species , 2011, Nucleic acids research.

[79]  Richard Bonneau,et al.  Multi-species integrative biclustering , 2010, Genome Biology.

[80]  Katherine H. Huang,et al.  The MicrobesOnline Web site for comparative genomics. , 2005, Genome research.

[81]  Florian Steinke,et al.  Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models , 2006, BMC Systems Biology.

[82]  Mikael Gustafsson,et al.  Constructing and Analyzing a Large-Scale Gene-to-Gene Regulatory Network-Lasso-Constrained Inference and Biological Validation , 2005, IEEE ACM Trans. Comput. Biol. Bioinform..

[83]  Ulrik Brandes,et al.  Biological Networks , 2013, Handbook of Graph Drawing and Visualization.

[84]  Neil D. Lawrence,et al.  TFInfer: a tool for probabilistic inference of transcription factor activities , 2010, Bioinform..

[85]  Richard Bonneau,et al.  Bacillus subtilis Systems Biology: Applications of -Omics Techniques to the Study of Endospore Formation. , 2014, Microbiology spectrum.

[86]  Torbjörn E. M. Nordling,et al.  Avoiding pitfalls in L1-regularised inference of gene networks. , 2015, Molecular bioSystems.

[87]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[88]  Richard Bonneau,et al.  DREAM4: Combining Genetic and Dynamic Information to Identify Biological Networks and Dynamical Models , 2010, PloS one.

[89]  Amy K. Schmid,et al.  A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell , 2007, Cell.

[90]  Rudiyanto Gunawan,et al.  Optimal design of gene knockout experiments for gene regulatory network inference , 2015, Bioinform..

[91]  T. Hughes,et al.  Dramatic changes in transcription factor binding over evolutionary time , 2010, Genome Biology.

[92]  S. Aerts,et al.  Discovery of Transcription Factors and Regulatory Regions Driving In Vivo Tumor Development by ATAC-seq and FAIRE-seq Open Chromatin Profiling , 2015, PLoS genetics.

[93]  Emily R. Miraldi,et al.  Longman, R.S. et al. CX(3)CR1(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J. Exp. Med. 211, 1571-1583 , 2014 .

[94]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[95]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[96]  R. Mann,et al.  Disentangling the many layers of eukaryotic transcriptional regulation. , 2012, Annual review of genetics.

[97]  Marc D. Perry,et al.  ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia , 2012, Genome research.

[98]  F. Gropp,et al.  The bat gene of Halobacterium halobium encodes a trans-acting oxygen inducibility factor. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Rona S. Gertner,et al.  Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity , 2015, Cell.

[100]  T. Wiehe,et al.  Comparative genomics: methods and applications , 2004, Naturwissenschaften.

[101]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[102]  S. Rhee,et al.  TAIR: a resource for integrated Arabidopsis data , 2002, Functional & Integrative Genomics.

[103]  William Stafford Noble,et al.  Sequence and chromatin determinants of cell-type–specific transcription factor binding , 2012, Genome research.

[104]  Jens Timmer,et al.  Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge , 2007, BMC Systems Biology.

[105]  Julie A. Dickerson,et al.  Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities , 2011, BMC Bioinformatics.

[106]  Mario L. Arrieta-Ortiz,et al.  An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network , 2015, Molecular systems biology.

[107]  Edward R. Dougherty,et al.  Optimal Experimental Design for Gene Regulatory Networks in the Presence of Uncertainty , 2015, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[108]  Richard Bonneau,et al.  Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks , 2013, Bioinform..

[109]  P. Geurts,et al.  Inferring Regulatory Networks from Expression Data Using Tree-Based Methods , 2010, PloS one.

[110]  Christine Vogel,et al.  Protein Expression Regulation under Oxidative Stress* , 2011, Molecular & Cellular Proteomics.

[111]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[112]  Terrence J. Sejnowski,et al.  Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain , 2015, Neuron.

[113]  Bart De Moor,et al.  Biclustering microarray data by Gibbs sampling , 2003, ECCB.

[114]  T. M. Murali,et al.  Automatic layout and visualization of biclusters , 2006, Algorithms for Molecular Biology.

[115]  A. Regev,et al.  Dynamic regulatory network controlling Th17 cell differentiation , 2013, Nature.

[116]  Mika Gustafsson,et al.  A validated gene regulatory network and GWAS identifies early regulators of T cell–associated diseases , 2015, Science Translational Medicine.

[117]  Paola Lecca,et al.  Methods of biological network inference for reverse engineering cancer chemoresistance mechanisms. , 2014, Drug discovery today.

[118]  D. Gresham,et al.  Determination of in vivo RNA kinetics using RATE-seq , 2014, RNA.

[119]  K. Verstrepen,et al.  How do regulatory networks evolve and expand throughout evolution? , 2015, Current opinion in biotechnology.

[120]  Lin Song,et al.  Comparison of co-expression measures: mutual information, correlation, and model based indices , 2012, BMC Bioinformatics.

[121]  E. Marcotte,et al.  Insights into the regulation of protein abundance from proteomic and transcriptomic analyses , 2012, Nature Reviews Genetics.

[122]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression data , 2015 .

[123]  Manolis Kellis,et al.  Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments , 2013, Nucleic acids research.

[124]  Peter D. Karp,et al.  MetaCyc and AraCyc. Metabolic Pathway Databases for Plant Research1[w] , 2005, Plant Physiology.

[125]  S. Goodbourn,et al.  Signal transduction and nuclear targeting: regulation of transcription factor activity by subcellular localisation. , 1993, Journal of cell science.

[126]  Jinzhi Lei,et al.  Stochastic Modeling in Systems Biology , 2011, 1104.4524.

[127]  Richard Bonneau,et al.  The inferelator 2.0: A scalable framework for reconstruction of dynamic regulatory network models , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[128]  Howard Y. Chang,et al.  A novel ATAC-seq approach reveals lineage-specific reinforcement of the open chromatin landscape via cooperation between BAF and p63 , 2015, Genome Biology.

[129]  M. Reinders,et al.  Genetic network modeling. , 2002, Pharmacogenomics.

[130]  Pedro P. Rocha,et al.  Finding the Right Partner in a 3D Genome , 2013, Science.

[131]  Joerg M. Buescher,et al.  Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism , 2012, Science.

[132]  John T. Lis,et al.  Defining mechanisms that regulate RNA polymerase II transcription in vivo , 2009, Nature.

[133]  Ryo Sakai,et al.  Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network , 2014, Nature Communications.

[134]  Neil D. Lawrence,et al.  A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription , 2006, Bioinform..

[135]  Howard Y. Chang,et al.  DDX5 and its associated lncRNA Rmrp modulate Th17 cell effector functions , 2015, Nature.

[136]  Canglin Wu,et al.  RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse , 2015, Database J. Biol. Databases Curation.

[137]  Rona S. Gertner,et al.  Single cell RNA Seq reveals dynamic paracrine control of cellular variation , 2014, Nature.

[138]  Juan M. Vaquerizas,et al.  DNA-Binding Specificities of Human Transcription Factors , 2013, Cell.

[139]  Nicola J. Rinaldi,et al.  Computational discovery of gene modules and regulatory networks , 2003, Nature Biotechnology.

[140]  Zhi-Ping Liu,et al.  Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data , 2015, Current genomics.

[141]  Neil D. Lawrence,et al.  Gaussian process modelling of latent chemical species: applications to inferring transcription factor activities , 2008, ECCB.

[142]  Morgan C. Giddings,et al.  Defining functional DNA elements in the human genome , 2014, Proceedings of the National Academy of Sciences.

[143]  Dianwen Zhu,et al.  CUNY Academic , 2016 .

[144]  Jörg Stülke,et al.  A community-curated consensual annotation that is continuously updated: the Bacillus subtilis centred wiki SubtiWiki , 2009, Database J. Biol. Databases Curation.

[145]  Erik L. L. Sonnhammer,et al.  Optimal Sparsity Criteria for Network Inference , 2013, J. Comput. Biol..

[146]  Julio Saez-Rodriguez,et al.  Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach , 2014, BMC Systems Biology.

[147]  Guido Tiana,et al.  Noncooperative interactions between transcription factors and clustered DNA binding sites enable graded transcriptional responses to environmental inputs. , 2010, Molecular cell.

[148]  Guy Karlebach,et al.  Modelling and analysis of gene regulatory networks , 2008, Nature Reviews Molecular Cell Biology.

[149]  Richard Bonneau,et al.  The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. , 2012, Molecular cell.

[150]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[151]  Howard Y. Chang,et al.  ATAC‐seq: A Method for Assaying Chromatin Accessibility Genome‐Wide , 2015, Current protocols in molecular biology.

[152]  N. Friedman,et al.  Chromatin state dynamics during blood formation , 2014, Science.

[153]  E. Furlong,et al.  Transcription factors: from enhancer binding to developmental control , 2012, Nature Reviews Genetics.

[154]  Rona S. Gertner,et al.  Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells , 2013, Nature.

[155]  Jörg Stülke,et al.  SubtiWiki—a comprehensive community resource for the model organism Bacillus subtilis , 2011, Nucleic Acids Res..

[156]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[157]  Lu Wang,et al.  BATF-JUN is critical for IRF4-mediated transcription in T cells , 2012, Nature.

[158]  Christopher S. Poultney,et al.  A physical sciences network characterization of non-tumorigenic and metastatic cells , 2013, Scientific Reports.

[159]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[160]  Yuri R. Bendaña,et al.  Functional footprinting of regulatory DNA , 2015, Nature Methods.

[161]  Leighton J. Core,et al.  Defining the status of RNA polymerase at promoters. , 2012, Cell reports.

[162]  Olga G. Troyanskaya,et al.  Detailing regulatory networks through large scale data integration , 2009, Bioinform..

[163]  Luis Serrano,et al.  Correlation of mRNA and protein in complex biological samples , 2009, FEBS letters.

[164]  D. Husmeier,et al.  Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data with Multiple Sources of Prior Knowledge , 2007, Statistical applications in genetics and molecular biology.

[165]  Paola Lecca,et al.  Biological network inference for drug discovery. , 2013, Drug discovery today.

[166]  Marcus Oswald,et al.  Estimating the activity of transcription factors by the effect on their target genes , 2014, Bioinform..

[167]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[168]  A. Boulesteix,et al.  Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach , 2005, Theoretical Biology and Medical Modelling.

[169]  Robert D. Leclerc Survival of the sparsest: robust gene networks are parsimonious , 2008, Molecular systems biology.

[170]  Single-cell ATAC-seq: strength in numbers , 2015, Genome Biology.

[171]  Richard Bonneau,et al.  A Validated Regulatory Network for Th17 Cell Specification , 2012, Cell.

[172]  Emma Steele,et al.  Consensus and Meta-analysis regulatory networks for combining multiple microarray gene expression datasets , 2008, J. Biomed. Informatics.

[173]  Philip E. Bourne,et al.  Achievements and challenges in structural bioinformatics and computational biophysics , 2014, Bioinform..

[174]  A. Regev,et al.  Transcriptome Analysis Identifies Regulators of Hematopoietic Stem and Progenitor Cells , 2013, Stem cell reports.

[175]  Shigeto Seno,et al.  Inference of S-system models of gene regulatory networks using immune algorithm. , 2011, Journal of bioinformatics and computational biology.

[176]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[177]  Zheng Li,et al.  Using a state-space model with hidden variables to infer transcription factor activities , 2006, Bioinform..

[178]  James C. Liao,et al.  Transcriptome network component analysis with limited microarray data , 2006, Bioinform..

[179]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[180]  Erik L. L. Sonnhammer,et al.  Functional association networks as priors for gene regulatory network inference , 2014, Bioinform..

[181]  Ron Shamir,et al.  Constructing Logical Models of Gene Regulatory Networks by Integrating Transcription Factor-DNA Interactions with Expression Data: An Entropy-Based Approach , 2012, J. Comput. Biol..

[182]  G. Hon,et al.  Adult tissue methylomes harbor epigenetic memory at embryonic enhancers , 2013, Nature Genetics.