Split Mode Method for the Elliptic 2D Sine-Gordon Equation: Application to Josephson Junction in Overlap Geometry

We introduce a new type of splitting method for semilinear partial differential equations. The method is analyzed in detail for the case of the two-dimensional static sine-Gordon equation describing a large area Josephson junction with overlap current feed and external magnetic field. The solution is separated into an explicit term that satisfies the one-dimensional sine-Gordon equation in the y-direction with boundary conditions determined by the bias current and a residual which is expanded using modes in the y-direction, the coefficients of which satisfy ordinary differential equations in x with boundary conditions given by the magnetic field. We show by direct comparison with a two-dimensional solution that this method converges and that it is an efficient way of solving the problem. The convergence of the y expansion for the residual is compared for Fourier cosine modes and the normal modes associated to the static one-dimensional sine-Gordon equation and we find a faster convergence for the latter. Even for such large widths as w=10 two such modes are enough to give accurate results.