On some generalizations of the implicit Euler method for discontinuous fractional differential equations

We discuss the numerical solution of differential equations of fractional order with discontinuous right-hand side. Problems of this kind arise, for instance, in sliding mode control. After applying a set-valued regularization, the behavior of some generalizations of the implicit Euler method is investigated. We show that the scheme in the family of fractional Adams methods possesses the same chattering-free property of the implicit Euler method in the integer case. A test problem is considered to discuss in details some implementation issues and numerical experiments are presented.

[1]  Roberto Garrappa,et al.  On Multistep Methods for Differential Equations of Fractional Order , 2006 .

[2]  Ivo Petras,et al.  Fractional-Order Nonlinear Systems , 2011 .

[3]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[4]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[5]  Roberto Garrappa,et al.  Generalized exponential time differencing methods for fractional order problems , 2011, Comput. Math. Appl..

[6]  Alain Oustaloup,et al.  Flatness Control of a Fractional Thermal System , 2007 .

[7]  C. Lubich Discretized fractional calculus , 1986 .

[8]  Mehmet Önder Efe,et al.  Fractional order sliding mode control with reaching law approach , 2010, Turkish Journal of Electrical Engineering and Computer Sciences.

[9]  Luca Dieci,et al.  Sliding Motion in Filippov Differential Systems: Theoretical Results and a Computational Approach , 2009, SIAM J. Numer. Anal..

[10]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[11]  C. Glocker,et al.  Formulation and Preparation for Numerical Evaluation of Linear Complementarity Systems in Dynamics , 2005 .

[12]  A Pisano,et al.  On second-order sliding-mode control of fractional-order dynamics , 2010, Proceedings of the 2010 American Control Conference.

[13]  Roberto Garrappa,et al.  Fractional Adams-Moulton methods , 2008, Math. Comput. Simul..

[14]  Roberto Garrappa,et al.  On accurate product integration rules for linear fractional differential equations , 2011, J. Comput. Appl. Math..

[15]  Marius-F. Danca,et al.  Numerical approximation of a class of discontinuous systems of fractional order , 2011 .

[16]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[17]  M. Caputo Linear models of dissipation whose Q is almost frequency independent , 1966 .

[18]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[19]  Jennifer Dixon On the order of the error in discretization methods for weakly singular second kind volterra integral equations with non-smooth solutions , 1985 .

[20]  Roberto Garrappa,et al.  On linear stability of predictor–corrector algorithms for fractional differential equations , 2010, Int. J. Comput. Math..

[21]  Jennifer Dixon,et al.  On the order of the error in discretization methods for weakly singular second kind non-smooth solutions , 1985 .

[22]  I. Podlubny Matrix Approach to Discrete Fractional Calculus , 2000 .

[23]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[24]  Aurelian Cernea,et al.  Continuous version of Filippov’s theorem for fractional differential inclusions , 2010 .

[25]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[26]  Ivo,et al.  [Nonlinear Physical Science] Fractional-Order Nonlinear Systems Volume 0 || Stability of Fractional-Order Systems , 2011 .

[27]  I. Podlubny Fractional differential equations , 1998 .

[28]  Vincent Acary,et al.  Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems , 2010, Syst. Control. Lett..

[29]  A. Young,et al.  Approximate product-integration , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  Xinghuo Yu,et al.  Euler's Discretization of Single Input Sliding-Mode Control Systems , 2007, IEEE Transactions on Automatic Control.

[31]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[32]  J. Aubin,et al.  Existence of Solutions to Differential Inclusions , 1984 .

[33]  B. Brogliato,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[34]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[35]  Francesco Mainardi,et al.  Linear models of dissipation in anelastic solids , 1971 .

[36]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[37]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[38]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[39]  C. Lubich,et al.  Runge-Kutta theory for Volterra and Abel integral equations of the second kind , 1983 .

[40]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[41]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[42]  R. F. Cameron,et al.  The analysis of product integration methods for Abel's equation using discrete fractional differentiation , 1985 .

[43]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[44]  Alessandro Pisano,et al.  Sliding mode control approaches to the robust regulation of linear multivariable fractional‐order dynamics , 2010 .

[45]  Roberto Garrappa,et al.  On some explicit Adams multistep methods for fractional differential equations , 2009 .

[46]  Duarte Valério,et al.  Fractional sliding mode control , 2012 .

[47]  Marius-F. Danca,et al.  Approach of a Class of Discontinuous Dynamical Systems of fractional Order: existence of solutions , 2011, Int. J. Bifurc. Chaos.

[48]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[49]  Gai-yun Wang,et al.  Control of Fractional Order Chaotic Systems , 2008, 2008 Second International Conference on Genetic and Evolutionary Computing.