Analysis and modeling of a silicon nitride slot-waveguide microring resonator biochemical sensor

The performance of a recently demonstrated silicon nitride slot-waveguide microring resonator biochemical sensor is analyzed. The slot-waveguide sensor is optically modeled by using finite element method, full-vectorial and semi-vectorial finite-difference beam propagation methods. Numerical calculations are discussed and compared to the sensor experimental performance. This study includes homogeneous sensing -by using different aqueous solutions-, surface sensing -due to both, surface etching and biomolecular layer adhesion-, and power coupling characteristics of the microring sensor. It is found that all of the aforementioned numerical methods provide good agreement with the experimental homogeneous sensitivity, surface etching sensitivity and power transmission coefficient at the resonator coupling. The analysis of the surface sensitivity due to biomolecular layer adhesion suggests biomolecule polymerization on the surface of the actual device. These results demonstrate the suitability of the proposed numerical optical models and indicate that the slot-waveguide microring device can be fully wetted with aqueous analytes, which is desirable for sensing and optofluidic applications at the nanoscale.

[1]  Robert W. Boyd,et al.  An environmental sensor based on an integrated optical whispering gallery mode disk resonator , 2007 .

[2]  A. Griol,et al.  Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform. , 2007, Optics express.

[3]  G Puzo,et al.  [Mechanism of glutaraldehyde-protein bond formation]. , 1975, Biochimie.

[4]  Amadeu Griol,et al.  Slot-waveguide biochemical sensor. , 2007, Optics letters.

[5]  B. Luff,et al.  Integrated-optical directional coupler biosensor. , 1996, Optics letters.

[6]  H. C. Pedersen,et al.  Optical waveguide sensor for on-line monitoring of bacteria. , 2003, Optics letters.

[7]  A. M. Jorgensen,et al.  Lab-on-a-chip with integrated optical transducers. , 2006, Lab on a chip.

[8]  T. Ohmi,et al.  Principles of wet chemical processing in ULSI microfabrication , 1991 .

[9]  Manfred Hammer,et al.  Analytical Approaches to the Description of Optical Microresonator Devices , 2004 .

[10]  Amadeu Griol,et al.  Label-free optical biosensing with slot-waveguides. , 2008, Optics letters.

[11]  D. Gill,et al.  Optical sensing of biomolecules using microring resonators , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  Pierre Monsan,et al.  Étude du mécanisme d'établissement des liaisons glutaraldéhyde-protéines , 1976 .

[13]  Chang-Bong Kim,et al.  Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter , 2004 .

[14]  Rene Heideman,et al.  Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor , 1993 .

[15]  Ann Witvrouw,et al.  HF etching of Si-oxides and Si-nitrides for surface micromachining , 2001 .

[16]  Xudong Fan,et al.  On the performance quantification of resonant refractive index sensors. , 2008, Optics express.

[17]  Hans Sohlström,et al.  Refractive Index Measurement Using Integrated Ring Resonators , 1997 .

[18]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[19]  T Okamoto,et al.  Optical waveguide absorption sensor using a single coupling prism. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  Miguel Holgado,et al.  Reconfiguration of microring resonators by liquid adhesion , 2008 .

[21]  J Greve,et al.  Sensor based on an integrated optical microcavity. , 2002, Optics letters.