Parameter-Free Simple Low-Dissipation AUSM-Family Scheme for All Speeds

This paper presents a new, simple low-dissipation numerical flux function of the AUSM-family for all speeds, called the simple low-dissipation AUSM. In contrast with existing all-speed schemes, the simple low-dissipation AUSM features low dissipation without any tunable parameters in a low Mach number regime while it keeps the robustness of the AUSM-family fluxes against shock-induced anomalies at high Mach numbers (e.g., carbuncle phenomena). Furthermore, the simple low-dissipation AUSM has a simpler formulation than the other all-speed schemes. These advantages of the present scheme are demonstrated in numerical examples of a wide spectrum of Mach numbers.

[1]  Eiji Shima,et al.  Simple and Parameter-Free Second Slope Limiter for Unstructured Grid Aerodynamic Simulations , 2012 .

[2]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[3]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[4]  Meng-Sing Liou,et al.  An Accurate and Robust Flux Splitting Scheme for Shock and Contact Discontinuities , 1997, SIAM J. Sci. Comput..

[5]  Meng-Sing Liou,et al.  A sequel to AUSM, Part II: AUSM+-up for all speeds , 2006, J. Comput. Phys..

[6]  D. Unrau,et al.  VISCOUS AIRFOIL COMPUTATIONS USING LOCAL PRECONDITIONING , 1997 .

[7]  Philip L. Roe,et al.  Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..

[8]  E. Turkel,et al.  PRECONDITIONING TECHNIQUES IN COMPUTATIONAL FLUID DYNAMICS , 1999 .

[9]  Yousef Saad 10. Preconditioning Techniques , 2003 .

[10]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[11]  Xue-song Li,et al.  An All-Speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour , 2008, J. Comput. Phys..

[12]  Zhi J. Wang,et al.  A Quadtree-based adaptive Cartesian/Quad grid flow solver for Navier-Stokes equations , 1998 .

[13]  Meng-Sing Liou,et al.  Mass Flux Schemes and Connection to Shock Instability , 2000 .

[14]  James J. Quirk,et al.  A Contribution to the Great Riemann Solver Debate , 1994 .

[15]  Eiji Shima,et al.  Performance of Low-Dissipation Euler Fluxes and Preconditioned LU-SGS at Low Speeds , 2011 .

[16]  G. D. van Albada,et al.  A comparative study of computational methods in cosmic gas dynamics , 1982 .

[17]  Keiichi Kitamura,et al.  Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers , 2008, J. Comput. Phys..

[18]  Zhi J. Wang,et al.  A fast nested multi-grid viscous flow solver for adaptive Cartesian/Quad grids , 1996 .

[19]  Jack R. Edwards,et al.  Towards unified CFD simulations of real fluid flows , 2001 .

[20]  A. Jameson,et al.  Implicit schemes and LU decompositions , 1981 .

[21]  Charles H. K. Williamson,et al.  Vortex Dynamics in the Wake of a Cylinder , 1995 .

[22]  H. Lomax,et al.  Thin-layer approximation and algebraic model for separated turbulent flows , 1978 .

[23]  Zhong-Hua Han,et al.  Numerical Study of High-Resolution Scheme Based on Preconditioning Method , 2008 .

[24]  M. Liou,et al.  A New Flux Splitting Scheme , 1993 .

[25]  Wayne A. Smith,et al.  Preconditioning Applied to Variable and Constant Density Flows , 1995 .

[26]  Eiji Shima,et al.  Evaluation of Euler Fluxes for Hypersonic Heating Computations , 2010 .

[27]  Eiji Shima,et al.  Carbuncle Phenomena and Other Shock Anomalies in Three Dimensions , 2012 .

[28]  Keiichi Kitamura,et al.  Evaluation of Euler Fluxes for Hypersonic Flow Computations , 2009 .

[29]  Dimitri J. Mavriplis,et al.  Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes , 2003 .