The Space of Gravity: Spatially Filtered Estimation of a Gravity Model for Bilateral Trade

Bilateral trade flows traditionally have been analysed by means of the spatial interaction gravity model. Still, (auto)correlation of trade flows has only recently received attention in the literature. This paper takes up this thread of emerging literature, and shows that spatial filtering (SF) techniques can take into account the autocorrelation in trade flows. Furthermore, we show that the use of origin and destination specific spatial filters goes a long way in correcting for omitted variable bias in an otherwise standard empirical gravity equation. For a cross-section of bilateral trade flows, we compare an SF approach to two benchmark specifications that are consistent with theoretically derived gravity. The results are relevant for a number of reasons. First, we correct for autocorrelation in the residuals. Second, we suggest that the empirical gravity equation can still be considered in applied work, despite the theoretical arguments for its misspecification due to omitted multilateral resistance terms. Third, if we include SF variables, we can still resort to any desired estimator, such as OLS, Poisson or negative binomial regression. Finally, interpreting endogeneity bias as autocorrelation in regressor variables and residuals allows for a more general specification of the gravity equation than the relatively restricted theoretical gravity equation. In particular, we can include additional country-specific push and pull variables, besides GDP (e.g., land area, landlockedness, and per capita GDP). A final analysis provides autocorrelation diagnostics according to different candidate indicators.

[1]  Johannes Bröcker,et al.  Barriers to international trade , 1990 .

[2]  J. LeSage,et al.  Spatial Econometric Modeling of Origin-Destination Flows , 2008 .

[3]  D Commenges,et al.  Tests of geographical correlation with adjustment for explanatory variables: an application to dyspnoea in the elderly. , 1997, Statistics in medicine.

[4]  Ashoka Mody,et al.  The Global Disconnect: The Role of Transactional Distance and Scale Economies in Gravity Equations , 2002 .

[5]  D. Griffith Spatial Autocorrelation and Spatial Filtering , 2003 .

[6]  J. LeSage Latent Multilateral Trade Resistance Indices: Theory and Evidence , 2015 .

[7]  D. Griffith Spatial Autocorrelation and Spatial Filtering: Gaining Understanding Through Theory and Scientific Visualization , 2010 .

[8]  L. Zhao,et al.  Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. , 1991, Biometrics.

[9]  Jeffrey A. Frankel,et al.  The Regionalization Of The World Economy , 1997 .

[10]  Manfred M. Fischer,et al.  Modeling Spatial Autocorrelation in Spatial Interaction Data: An Application to Patent Citation Data in the European Union , 2008 .

[11]  J. Bergstrand The Gravity Equation in International Trade: Some Microeconomic Foundations and Empirical Evidence , 1985 .

[12]  Christoph Grimpe,et al.  Regional knowledge production in nanomaterials: a spatial filtering approach , 2008 .

[13]  P. Egger,et al.  Alternative Techniques for Estimation of Cross-Section Gravity Models , 2005 .

[14]  Luc Anselin,et al.  Properties of Tests for Spatial Dependence in Linear Regression Models , 2010 .

[15]  Martin Feldkircher,et al.  Spatial filtering, model uncertainty and the speed of income convergence in Europe , 2013 .

[16]  J. Bröcker How to Eliminate Certain Defects of the Potential Formula , 1989 .

[17]  Gaël Raballand Determinants of the Negative Impact of Being Landlocked on Trade: An Empirical Investigation Through the Central Asian Case , 2003 .

[18]  Carol A. Gotway,et al.  Statistical Methods for Spatial Data Analysis , 2004 .

[19]  Tony E. Smith TESTING FOR SPATIAL AUTOCORRELATION IN AREAL DATA , 2012 .

[20]  Alan Wilson,et al.  Entropy in urban and regional modelling , 1972, Handbook on Entropy, Complexity and Spatial Dynamics.

[21]  K. Head,et al.  The Puzzling Persistence of the Distance Effect on Bilateral Trade , 2004 .

[22]  James E. Anderson,et al.  Insecurity and the Pattern of Trade: An Empirical Investigation , 2002, Review of Economics and Statistics.

[23]  Daniel A. Griffith,et al.  Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows , 2009, J. Geogr. Syst..

[24]  Daria Taglioni,et al.  Gravity for Dummies and Dummies for Gravity Equations , 2006 .

[25]  Alan V. Deardorff Determinants of Bilateral Trade , 1997 .

[26]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[27]  Peniti Pöyhönen,et al.  A Tentative Model for the Volume of Trade between Countries , 2016 .

[28]  Silvana Tenreyro,et al.  The Log of Gravity , 2004 .

[29]  S. le Cessie,et al.  Testing the fit of a regression model via score tests in random effects models. , 1995 .

[30]  Daniel A. Griffith,et al.  Spatial Structure and Spatial Interaction: 25 Years Later , 2007 .

[31]  R. Feenstra,et al.  World Trade Flows: 1962-2000 , 2005 .

[32]  Jan Tinbergen,et al.  Shaping the world economy , 1963 .

[33]  R. Feenstra Advanced international trade : theory and evidence , 2004 .

[34]  H. Nordås,et al.  Institutions, Trade Policy and Trade Flows , 2004 .

[35]  A. Lawson,et al.  Adjusting Moran's I for population density. , 1996, Statistics in medicine.

[36]  Tony E. Smith,et al.  Gravity Models of Spatial Interaction Behavior , 1995 .

[37]  Daniel A. Griffith,et al.  Spatial Autocorrelation in Spatial Interaction , 2009 .

[38]  Manfred M. Fischer,et al.  A Spatial Autoregressive Poisson Gravity Model , 2013 .

[39]  Scott L. Baier,et al.  Bonus vetus OLS: A simple method for approximating international trade-cost effects using the gravity equation , 2009 .

[40]  Morton E. O'Kelly,et al.  Spatial Interaction Models:Formulations and Applications , 1988 .

[41]  P. Monestiez,et al.  Geostatistical modelling of spatial distribution of balaenoptera physalus in the Northwestern Mediterranean Sea from sparse count data and heterogeneous observation efforts , 2006 .

[42]  P. Egger,et al.  On the Problem of Endogenous Unobserved Effects in the Estimation of Gravity Models , 2004 .

[43]  Kenneth Rogoff,et al.  The Six Major Puzzles in International Macroeconomics: Is There a Common Cause? , 2000, NBER Macroeconomics Annual.

[44]  G. Lin,et al.  Loglinear Residual Tests of Moran's I Autocorrelation and their Applications to Kentucky Breast Cancer Data , 2007 .

[45]  Brian D. Ripley,et al.  Modern applied statistics with S, 4th Edition , 2002, Statistics and computing.

[46]  Badi H. Baltagi,et al.  Estimating models of complex FDI: Are there third-country effects? , 2007 .

[47]  R. Cooper,et al.  Regional Trading Blocs in the World Trading System , 1998 .

[48]  Barry Eichengreen,et al.  The Role of History in Bilateral Trade Flows , 1996 .

[49]  J. Keith Ord,et al.  Spatial Processes Models and Applications , 1981 .

[50]  Piet Rietveld,et al.  The Institutional Determinants of Bilateral Trade Patterns , 2003 .

[51]  Thomas Scherngell,et al.  Towards an integrated European Research Area? Findings from Eigenvector spatially filtered spatial interaction models using European Framework Programme data , 2012 .

[52]  Piet Rietveld,et al.  The Institutional Determinants of Bilateral Trade Patterns , 2004 .

[53]  L. Anselin Spatial Econometrics: Methods and Models , 1988 .

[54]  S. Straathof Gravity with gravitas: comment , 2008 .

[55]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[56]  Daniel A. Griffith,et al.  The Moran coefficient for non-normal data , 2010 .

[57]  K. Head,et al.  The Puzzling Persistence of the Distance Effect on Bilateral Trade , 2004, The Review of Economics and Statistics.

[58]  T. Krisztin,et al.  The Gravity Model for International Trade: Specification and Estimation Issues , 2014 .

[59]  J. Tinbergen Shaping the World Economy: Suggestions for an International Economic Policy , 1964 .

[60]  A. Porojan,et al.  Trade Flows and Spatial Effects: The Gravity Model Revisited , 2001 .

[61]  R. Patuelli,et al.  Regional Labour Markets in Germany: Statistical Analysis of Spatio-Temporal Disparities and Netwok Structures , 2007 .

[62]  Edward J. Balistreri,et al.  Structural Estimation and the Border Puzzle , 2004 .

[63]  Yongwan Chun,et al.  Modeling network autocorrelation within migration flows by eigenvector spatial filtering , 2008, J. Geogr. Syst..

[64]  Wilfried Koch,et al.  'Dual' Gravity: Using Spatial Econometrics to Control for Multilateral Resistance , 2007 .

[65]  James E. Anderson,et al.  Gravity with Gravitas: A Solution to the Border Puzzle , 2001 .

[66]  M. Fratianni The Gravity Equation in International Trade , 2009 .

[67]  James E. Anderson,et al.  Trade Costs , 2004 .

[68]  Luc Anselin,et al.  Properties of tests for spatial error components , 2003 .

[69]  L. Mátyás The Gravity Model: Some Econometric Considerations , 1998 .

[70]  Keith Ord,et al.  Testing for Spatial Autocorrelation Among Regression Residuals , 2010 .