A lamprey neural cell type atlas illuminates the origins of the vertebrate brain

[1]  Huanming Yang,et al.  Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration , 2022, Science.

[2]  Maximina H. Yun,et al.  Cell type profiling in salamanders identifies innovations in vertebrate forebrain evolution , 2022, bioRxiv.

[3]  S. Grillner Evolution of the vertebrate motor system — from forebrain to spinal cord , 2021, Current Opinion in Neurobiology.

[4]  S. Kuraku,et al.  Genetic Mechanism for the Cyclostome Cerebellar Neurons Reveals Early Evolution of the Vertebrate Cerebellum , 2021, Frontiers in Cell and Developmental Biology.

[5]  G. Striedter,et al.  The Independent Evolution of Dorsal Pallia in Multiple Vertebrate Lineages , 2021, Brain, Behavior and Evolution.

[6]  D. Arendt,et al.  The dorsoanterior brain of adult amphioxus shares similarities in expression profile and neuronal composition with the vertebrate telencephalon , 2021, BMC biology.

[7]  M. Coates,et al.  Non-ammocoete larvae of Palaeozoic stem lampreys , 2021, Nature.

[8]  R. Anadón,et al.  Differential expression of somatostatin genes in the central nervous system of the sea lamprey , 2021, Brain Structure and Function.

[9]  Shreyas M. Suryanarayana,et al.  Olfaction in Lamprey Pallium Revisited-Dual Projections of Mitral and Tufted Cells. , 2021, Cell reports.

[10]  Howard Y. Chang,et al.  Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set , 2020, Science.

[11]  James M. Otis,et al.  Prepronociceptin-Expressing Neurons in the Extended Amygdala Encode and Promote Rapid Arousal Responses to Motivationally Salient Stimuli , 2020, Cell reports.

[12]  Shreyas M. Suryanarayana,et al.  The evolutionary origin of visual and somatosensory representation in the vertebrate pallium , 2020, Nature Ecology & Evolution.

[13]  M. Elphick,et al.  Cholecystokinin in the central nervous system of the sea lamprey Petromyzon marinus: precursor identification and neuroanatomical relationships with other neuronal signalling systems , 2019, Brain Structure and Function.

[14]  Carlos González,et al.  Heterochromatin protein 1α interacts with parallel RNA and DNA G-quadruplexes , 2019, Nucleic acids research.

[15]  I. Amit,et al.  Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program , 2019, Cell.

[16]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[17]  Brian S. Clark,et al.  Single-cell analysis of human retina identifies evolutionarily conserved and species-specific mechanisms controlling development , 2019, bioRxiv.

[18]  H. Kaessmann,et al.  Galanin in an Agnathan: Precursor Identification and Localisation of Expression in the Brain of the Sea Lamprey Petromyzon marinus , 2019, Front. Neuroanat..

[19]  C. W. Ragsdale,et al.  Evolution of the Chordate Telencephalon , 2019, Current Biology.

[20]  J. Matese,et al.  Comprehensive single cell transcriptome lineages of a proto-vertebrate , 2019, Nature.

[21]  Evan Z. Macosko,et al.  Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity , 2019, Cell.

[22]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[23]  D. Arendt,et al.  Evolution of neuronal types and families , 2019, Current Opinion in Neurobiology.

[24]  G. Laurent,et al.  Evolution of neuronal identity in the cerebral cortex , 2019, Current Opinion in Neurobiology.

[25]  Allon M Klein,et al.  Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. , 2019, Cell systems.

[26]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[27]  Arndt von Twickel,et al.  Individual Dopaminergic Neurons of Lamprey SNc/VTA Project to Both the Striatum and Optic Tectum but Restrict Co-release of Glutamate to Striatum Only , 2019, Current Biology.

[28]  C. W. Ragsdale,et al.  Homology, neocortex, and the evolution of developmental mechanisms , 2018, Science.

[29]  D. McCauley,et al.  Gliogenesis in lampreys shares gene regulatory interactions with oligodendrocyte development in jawed vertebrates. , 2018, Developmental biology.

[30]  Tracy M. Yamawaki,et al.  Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles , 2018, Science.

[31]  Lars E. Borm,et al.  Molecular Architecture of the Mouse Nervous System , 2018, Cell.

[32]  James A. Gagnon,et al.  Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain , 2018, Nature Biotechnology.

[33]  Koji Ando,et al.  A molecular atlas of cell types and zonation in the brain vasculature , 2018, Nature.

[34]  Sofia M. C. Robb,et al.  The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution , 2017, Nature Genetics.

[35]  Sten Grillner,et al.  The Lamprey Pallium Provides a Blueprint of the Mammalian Layered Cortex , 2017, Current Biology.

[36]  S. Grillner,et al.  The blueprint of the vertebrate forebrain - With special reference to the habenulae. , 2017, Seminars in cell & developmental biology.

[37]  R. Anadón,et al.  Restricted co‐localization of glutamate and dopamine in neurons of the adult sea lamprey brain , 2017, Journal of anatomy.

[38]  Sudhir Kumar,et al.  TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. , 2017, Molecular biology and evolution.

[39]  S. Kelly,et al.  STRIDE: Species Tree Root Inference from Gene Duplication Events , 2017, bioRxiv.

[40]  Y. Murakami,et al.  Reconstructing the ancestral vertebrate brain , 2017, Development, growth & differentiation.

[41]  P. Bovolenta,et al.  Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain , 2017, PLoS biology.

[42]  Evgeny M. Zdobnov,et al.  OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs , 2016, Nucleic Acids Res..

[43]  Jeffrey R Moffitt,et al.  High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing , 2016, Proceedings of the National Academy of Sciences.

[44]  G. Wagner,et al.  The origin and evolution of cell types , 2016, Nature Reviews Genetics.

[45]  R. Kelsh,et al.  Functional constraints on SoxE proteins in neural crest development: The importance of differential expression for evolution of protein activity. , 2016, Developmental biology.

[46]  Bronwen L. Aken,et al.  The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons , 2016, Nature Genetics.

[47]  S. Aota,et al.  Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain , 2016, Nature.

[48]  S. Grillner,et al.  Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3 , 2016, Nature Communications.

[49]  K. Lewis,et al.  Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus , 2015, Development.

[50]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[51]  David L. Bennett,et al.  Transcriptional regulator PRDM12 is essential for human pain perception , 2015, Nature Genetics.

[52]  Jian Wang,et al.  NeuroPep: a comprehensive resource of neuropeptides , 2015, Database J. Biol. Databases Curation.

[53]  T. Becker,et al.  Neuronal regeneration from ependymo-radial glial cells: cook, little pot, cook! , 2015, Developmental cell.

[54]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[55]  Shreyas M. Suryanarayana,et al.  The Lamprey Pallium Provides a Blueprint of the Mammalian Motor Projections from Cortex , 2015, Current Biology.

[56]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[57]  Brian J. Raney,et al.  Elephant shark genome provides unique insights into gnathostome evolution , 2014, Nature.

[58]  J. Partanen,et al.  The role of Tal2 and Tal1 in the differentiation of midbrain GABAergic neuron precursors , 2013, Biology Open.

[59]  Carolina Wählby,et al.  In situ sequencing for RNA analysis in preserved tissue and cells , 2013, Nature Methods.

[60]  Anton J. Enright,et al.  The zebrafish reference genome sequence and its relationship to the human genome , 2013, Nature.

[61]  Eric S. Lander,et al.  The African coelacanth genome provides insights into tetrapod evolution , 2013 .

[62]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[63]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[64]  S. Grillner,et al.  Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems , 2011, Proceedings of the National Academy of Sciences.

[65]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[66]  S. Grillner,et al.  Evolutionary Conservation of the Basal Ganglia as a Common Vertebrate Mechanism for Action Selection , 2011, Current Biology.

[67]  L. Puelles,et al.  Distal-less-like protein distribution in the larval lamprey forebrain , 2011, Neuroscience.

[68]  M. Pombal,et al.  Development and Organization of the Lamprey Telencephalon with Special Reference to the GABAergic System , 2011, Front. Neuroanat..

[69]  R. Anadón,et al.  New insights on the neuropeptide Y system in the larval lamprey brain: neuropeptide Y immunoreactive neurons, descending spinal projections and comparison with tyrosine hydroxylase and GABA immunoreactivities , 2010, Neuroscience.

[70]  Russell B. Fletcher,et al.  The Genome of the Western Clawed Frog Xenopus tropicalis , 2010, Science.

[71]  Serban Nacu,et al.  Fast and SNP-tolerant detection of complex variants and splicing in short reads , 2010, Bioinform..

[72]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[73]  R. Anadón,et al.  A monoclonal antibody as a tool to study the subcommissural organ and Reissner's fibre of the sea lamprey: An immunofluorescence study before and after a spinal cord transection , 2009, Neuroscience Letters.

[74]  L. Puelles,et al.  New and Old Thoughts on the Segmental Organization of the Forebrain in Lampreys , 2009, Brain, Behavior and Evolution.

[75]  J. Partanen,et al.  Gata2 is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons , 2009, Development.

[76]  Ken Dewar,et al.  Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations , 2008, Genome Biology.

[77]  A. Fischer,et al.  Transient expression of LIM‐domain transcription factors is coincident with delayed maturation of photoreceptors in the chicken retina , 2008, The Journal of comparative neurology.

[78]  S. Rétaux,et al.  Windows of the brain: towards a developmental biology of circumventricular and other neurohemal organs. , 2007, Seminars in cell & developmental biology.

[79]  S. Rhodes,et al.  Roles of the LHX3 and LHX4 LIM-homeodomain factors in pituitary development , 2007, Molecular and Cellular Endocrinology.

[80]  Hidetoshi Shimodaira,et al.  Pvclust: an R package for assessing the uncertainty in hierarchical clustering , 2006, Bioinform..

[81]  Colin N. Dewey,et al.  Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution , 2004, Nature.

[82]  Chris T. Amemiya,et al.  Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey , 2004, Nature.

[83]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[84]  S Grillner,et al.  Reticulospinal neurones provide monosynaptic glycinergic inhibition of spinal neurones in lamprey , 1995, Neuroreport.

[85]  Menek Goldstein,et al.  Neurotensin‐like Peptides in the CNS of Lampreys: Chromatographic Characterization and Immunohistochemical Localization with Reference to Aminergic Markers , 1990, The European journal of neuroscience.

[86]  T. Bullock,et al.  Evolution of myelin sheaths: Both lamprey and hagfish lack myelin , 1984, Neuroscience Letters.

[87]  C. Gans,et al.  Neural Crest and the Origin of Vertebrates: A New Head , 1983, Science.

[88]  J. Youson,et al.  Morphology of the pineal complex of the anadromous sea lamprey, Petromyzon marinus L. , 1982, The American journal of anatomy.

[89]  B. Deurs,et al.  Brain barrier systems in the lamprey. II. Ultrastructure and permeability of the choroid plexus , 1982, Brain Research.

[90]  T. Nakao Electron microscopic studies on the lamprey meninges , 1979, The Journal of comparative neurology.

[91]  C. Rovainen Glucose Production by Lamprey Meninges , 1970, Science.

[92]  G. Pertea,et al.  GFF Utilities: GffRead and GffCompare. , 2020, F1000Research.

[93]  R. Anadón,et al.  Glutamatergic neuronal populations in the forebrain of the sea lamprey, Petromyzon marinus: An in situ hybridization and immunocytochemical study , 2011, The Journal of comparative neurology.

[94]  J. Rubenstein,et al.  Histogenetic compartments of the mouse centromedial and extended amygdala based on gene expression patterns during development , 2008, The Journal of comparative neurology.