Generalized sampling: a variational approach .II. Applications

For pt.I see ibid., vol.50, no.8, p.1965-76 (2000). The variational reconstruction theory from a companion paper finds a solution consistent with some linear constraints and minimizing a quadratic plausibility criterion. It is suitable for treating vector and multidimensional signals. Here, we apply the theory to a generalized sampling system consisting of a multichannel filterbank followed by a nonuniform sampling. We provide ready-made formulas, which should permit application of the technique directly to problems at hand. We comment on the practical aspects of the method, such as numerical stability and speed. We show the reconstruction formula and apply it to several practical examples, including new variational formulation of derivative sampling, landmark warping, and tomographic reconstruction.

[1]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[2]  Michael Unser,et al.  Recursive Regularization Filters: Design, Properties, and Applications , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Akram Aldroubi,et al.  B-SPLINE SIGNAL PROCESSING: PART I-THEORY , 1993 .

[4]  A. Papoulis,et al.  Generalized sampling expansion , 1977 .

[5]  Maria Gabrani,et al.  Surface-based matching using elastic transformations , 1999, Pattern Recognit..

[6]  Pierre Moulin,et al.  Multiscale modeling and estimation of motion fields for video coding , 1997, IEEE Trans. Image Process..

[7]  Jonathan S. Maltz,et al.  Reproducing kernel Hilbert space method for optimal interpolation of potential field data , 1998, IEEE Trans. Image Process..

[8]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[9]  Richard Szeliski,et al.  Spline-Based Image Registration , 1997, International Journal of Computer Vision.

[10]  M. Unser,et al.  Generalized Sampling: A Variational Approach , 2001 .

[11]  Michael Unser,et al.  Unwarping of unidirectionally distorted EPI images , 2000, IEEE Transactions on Medical Imaging.

[12]  David M. Allen,et al.  The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction , 1974 .

[13]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[14]  Akram Aldroubi,et al.  B-SPLINE SIGNAL PROCESSING: PART II-EFFICIENT DESIGN AND APPLICATIONS , 1993 .

[15]  Thierry Blu,et al.  Generalized sampling: a variational approach .I. Theory , 2002, IEEE Trans. Signal Process..

[16]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[17]  W. R. Madych,et al.  Polynomial Based Algorithms for Computed Tomography II , 1983 .

[18]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[19]  Michael Unser,et al.  B-spline signal processing. I. Theory , 1993, IEEE Trans. Signal Process..

[20]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[21]  R. Beatson,et al.  Fast evaluation of radial basis functions: I , 1992 .

[22]  I J Schoenberg,et al.  SPLINE FUNCTIONS AND THE PROBLEM OF GRADUATION. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Jürgen Weese,et al.  Point-Based Elastic Registration of Medical Image Data Using Approximating Thin-Plate Splines , 1996, VBC.

[24]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[25]  Thierry Blu,et al.  Variational approach to tomographic reconstruction , 2001, SPIE Medical Imaging.

[26]  Akram Aldroubi,et al.  B-spline signal processing. II. Efficiency design and applications , 1993, IEEE Trans. Signal Process..

[27]  G. Barton Elements of Green's Functions and Propagation: Potentials, Diffusion, and Waves , 1989 .

[28]  Andrew D. Back,et al.  Radial Basis Functions , 2001 .

[29]  W. Madych,et al.  The Recovery of Irregularly Sampled Band Limited Functions via Tempered Splines , 1994 .

[30]  Richard K. Beatson,et al.  Fast Solution of the Radial Basis Function Interpolation Equations: Domain Decomposition Methods , 2000, SIAM J. Sci. Comput..

[31]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .

[32]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[33]  H. Eom Green’s Functions: Applications , 2004 .

[34]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[35]  Michael Unser,et al.  Cardinal spline filters: Stability and convergence to the ideal sinc interpolator , 1992, Signal Process..

[36]  G. Wahba Spline models for observational data , 1990 .

[37]  K. J. Ray Liu,et al.  Wavelet-based multiresolution local tomography , 1997, IEEE Trans. Image Process..

[38]  M. Unser Generalized Sampling : A Variational Approach — Part I : Theory , 2001 .

[39]  Anders Stenman,et al.  Model on Demand: Algorithms, Analysis and Applications , 1999 .