Low Order Discontinuous Galerkin Methods for Second Order Elliptic Problems

We consider DG-methods for second order scalar elliptic problems using piecewise affine approximation in two or three space dimensions. We prove that both the symmetric and the nonsymmetric versions of the DG-method have regular system matrices without penalization of the interelement solution jumps provided boundary conditions are imposed in a certain weak manner. Optimal convergence is proved for sufficiently regular meshes and data. We then propose a DG-method using piecewise affine functions enriched with quadratic bubbles. Using this space we prove optimal convergence in the energy norm for both a symmetric and nonsymmetric DG-method without stabilization. All of these proposed methods share the feature that they conserve mass locally independent of the penalty parameter.

[1]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[2]  Benjamin Stamm,et al.  Symmetric and non-symmetric discontinuous Galerkin methods stabilized using bubble enrichment , 2008 .

[3]  Benjamin Stamm,et al.  Minimal Stabilization for Discontinuous Galerkin Finite Element Methods for Hyperbolic Problems , 2007, J. Sci. Comput..

[4]  Mats G. Larson,et al.  Analysis of a Nonsymmetric Discontinuous Galerkin Method for Elliptic Problems: Stability and Energy Error Estimates , 2004, SIAM J. Numer. Anal..

[5]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[6]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[7]  Serge Prudhomme,et al.  A Priori error analyses of a stabilized discontinuous Galerkin method , 2003 .

[8]  Paola F. Antonietti,et al.  Bubble stabilization of Discontinuous Galerkin methods , 2009 .

[9]  R. Temam Navier-Stokes Equations , 1977 .

[10]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[11]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[12]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[13]  Daniele Marazzina,et al.  Mixed Discontinuous Galerkin Methods with Minimal Stabilization , 2006 .

[14]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[15]  S. C. Brenner,et al.  POINCAR´ E-FRIEDRICHS INEQUALITIES FOR PIECEWISE H 1 FUNCTIONS ∗ , 2003 .

[16]  J. Peiro,et al.  On 2D elliptic discontinuous Galerkin methods , 2006 .

[17]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[18]  Mats G. Larson,et al.  Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one dimensional case , 2004, Numerische Mathematik.

[19]  Jean-Luc Guermond,et al.  Discontinuous Galerkin Methods for Friedrichs' Systems. I. General theory , 2006, SIAM J. Numer. Anal..

[20]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[21]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[22]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[23]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[24]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[25]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[26]  L. D. Marini,et al.  Stabilization mechanisms in discontinuous Galerkin finite element methods , 2006 .