Predicting quantum advantage by quantum walk with convolutional neural networks

Quantum walks are at the heart of modern quantum technologies. They allow to deal with quantum transport phenomena and are an advanced tool for constructing novel quantum algorithms. Quantum walks on graphs are fundamentally different from classical random walks analogs, in particular, they walk faster than classical ones on certain graphs, enabling in these cases quantum algorithmic applications and quantum-enhanced energy transfer. However, little is known about the possible speedups on arbitrary graphs not having explicit symmetries. For these graphs one would need to perform simulations of classical and quantum walk dynamics to check if the speedup occurs, which could take a long computational time. Here we present a new approach for the solution of the quantum speedup problem, which is based on a machine learning algorithm that detects the quantum advantage by just looking at a graph. The convolutional neural network, which we designed specifically to learn from graphs, observes simulated examples and learns complex features of graphs that lead to a quantum speedup, allowing to identify graphs that exhibit quantum speedup without performing any quantum walk or random walk simulations. Our findings pave the way to an automated elaboration of novel large-scale quantum circuits utilizing quantum walk based algorithms, and to simulating high-efficiency energy transfer in biophotonics and material science.

[1]  Maciej Lewenstein,et al.  Hybrid annealing: Coupling a quantum simulator to a classical computer , 2016, 1611.09729.

[2]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[3]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[4]  Markus Tiersch,et al.  Quantum walks on embedded hypercubes , 2014 .

[5]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[6]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[7]  Vedran Dunjko,et al.  Quantum speedup for active learning agents , 2014, 1401.4997.

[8]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[9]  J. Smolin,et al.  Classical signature of quantum annealing , 2013, Front. Phys..

[10]  Salvador Elías Venegas-Andraca,et al.  Quantum walks: a comprehensive review , 2012, Quantum Information Processing.

[11]  R. Nichols,et al.  A hybrid machine learning algorithm for designing quantum experiments , 2018, Quantum Machine Intelligence.

[12]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[13]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.

[14]  Julia Kempe,et al.  Discrete Quantum Walks Hit Exponentially Faster , 2005 .

[15]  Fei-Fei Li,et al.  Large-Scale Video Classification with Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Kostyantyn Kechedzhi,et al.  Open system quantum annealing in mean field models with exponential degeneracy , 2015, 1505.05878.

[17]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[18]  Graham D. Marshall,et al.  Large-scale silicon quantum photonics implementing arbitrary two-qubit processing , 2018, Nature Photonics.

[19]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[20]  Mario Krenn,et al.  Active learning machine learns to create new quantum experiments , 2017, Proceedings of the National Academy of Sciences.

[21]  Renato Renner,et al.  Discovering physical concepts with neural networks , 2018, Physical review letters.

[22]  Gregory F. Lawler,et al.  Expected hitting times for a random walk on a connected graph , 1986, Discret. Math..

[23]  Hans J. Briegel,et al.  Projective simulation for artificial intelligence , 2011, Scientific Reports.

[24]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[25]  Edward A. Codling,et al.  Random walk models in biology , 2008, Journal of The Royal Society Interface.

[26]  Salvador Elías Venegas-Andraca,et al.  Quantum Walks for Computer Scientists , 2008, Quantum Walks for Computer Scientists.

[27]  . Markov Chains and Random Walks on Graphs , .

[28]  H J Briegel,et al.  Heat transport through lattices of quantum harmonic oscillators in arbitrary dimensions. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Andris Ambainis,et al.  Spatial Search by Quantum Walk is Optimal for Almost all Graphs. , 2015, Physical review letters.

[30]  Tommi Sottinen,et al.  Fractional Brownian motion, random walks and binary market models , 2001, Finance Stochastics.

[31]  Jacob D. Biamonte,et al.  Deep learning super-diffusion in multiplex networks , 2018, ArXiv.

[32]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[33]  R. Melko,et al.  Machine Learning Phases of Strongly Correlated Fermions , 2016, Physical Review X.

[34]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[35]  Christino Tamon,et al.  Mixing and decoherence in continuous-time quantum walks on cycles , 2006, Quantum Inf. Comput..

[36]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[37]  Rajeev Motwani,et al.  Randomized Algorithms: Online Algorithms , 1995 .

[38]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[39]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[40]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[41]  Ghassan Hamarneh,et al.  BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment , 2017, NeuroImage.

[42]  Andreas Buchleitner,et al.  Efficient and coherent excitation transfer across disordered molecular networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Patrice Y. Simard,et al.  Best practices for convolutional neural networks applied to visual document analysis , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[44]  Pankaj Mehta,et al.  Reinforcement Learning in Different Phases of Quantum Control , 2017, Physical Review X.

[45]  Leonid Fedichkin,et al.  Continuous-time quantum walks on a cycle graph (5 pages) , 2006 .

[46]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  J. Ignacio Cirac,et al.  Computational speedups using small quantum devices , 2018, Physical review letters.

[48]  Andrew M. Childs,et al.  Universal computation by quantum walk. , 2008, Physical review letters.

[49]  Mason A. Porter,et al.  Corrigendum to “Random walks and diffusion on networks” [Phys. Rep. 716–717 (2017) 1–58] , 2018, Physics Reports.

[50]  Firas Hamze,et al.  Erratum: Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines (Phys. Rev. X 4, 021008 (2014)) , 2015 .

[51]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[52]  Ah Chung Tsoi,et al.  Face recognition: a convolutional neural-network approach , 1997, IEEE Trans. Neural Networks.

[53]  R. Portugal,et al.  QUANTUM HITTING TIME ON THE COMPLETE GRAPH , 2009, 0912.1217.

[54]  Markus Tiersch,et al.  Quantum walks on embedded hypercubes: Nonsymmetric and nonlocal cases , 2015, 1510.08388.

[55]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[56]  Daniel A. Lidar,et al.  Adiabatic quantum computation , 2016, 1611.04471.

[57]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[58]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[59]  Hans-J. Briegel,et al.  Machine learning for long-distance quantum communication , 2019, PRX Quantum.

[60]  Tommi S. Jaakkola,et al.  Partially labeled classification with Markov random walks , 2001, NIPS.

[61]  Tien-Chang Lu,et al.  Exciton-polariton Josephson junctions at finite temperatures , 2017, Scientific Reports.

[62]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[63]  Frederic Bartumeus,et al.  ANIMAL SEARCH STRATEGIES: A QUANTITATIVE RANDOM‐WALK ANALYSIS , 2005 .

[64]  L. Asz Random Walks on Graphs: a Survey , 2022 .

[65]  Christos Gkantsidis,et al.  Random walks in peer-to-peer networks: Algorithms and evaluation , 2006, Perform. Evaluation.

[66]  M. Kac Random Walk and the Theory of Brownian Motion , 1947 .

[67]  Nicolai Friis,et al.  Optimizing Quantum Error Correction Codes with Reinforcement Learning , 2018, Quantum.

[68]  H. Krovi,et al.  Hitting time for quantum walks on the hypercube (8 pages) , 2005, quant-ph/0510136.

[69]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[70]  R. Portugal Quantum Walks and Search Algorithms , 2013 .

[71]  Florian Marquardt,et al.  Reinforcement Learning with Neural Networks for Quantum Feedback , 2018, Physical Review X.

[72]  Andrew M. Childs,et al.  Universal Computation by Multiparticle Quantum Walk , 2012, Science.

[73]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[74]  Markus Tiersch,et al.  Quantum transport efficiency and Fourier's law. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  Maxime Lebugle,et al.  Integrated photonic quantum walks , 2016, Journal of Physics B: Atomic, Molecular and Optical Physics.

[76]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.

[77]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[78]  Firas Hamze,et al.  Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.

[79]  Mason A. Porter,et al.  Random walks and diffusion on networks , 2016, ArXiv.

[80]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[81]  Leonid E. Fedichkin,et al.  Quantum walks of interacting fermions on a cycle graph , 2013, Scientific Reports.