Geometric Methods and Applications: For Computer Science and Engineering

This book is an introduction to the fundamental concepts and tools needed for solving problems of a geometric nature using a computer. It attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, robotics, or machine learning. This book covers the following topics: affine geometry, projective geometry, Euclidean geometry, convex sets, SVD and principal component analysis, manifolds and Lie groups, quadratic optimization, basics of differential geometry, and a glimpse of computational geometry (Voronoi diagrams and Delaunay triangulations). Some practical applications of the concepts presented in this book include computer vision, more specifically contour grouping, motion interpolation, and robot kinematics.In this extensively updated second edition, more material on convex sets, Farkass lemma, quadratic optimization and the Schur complement have been added. The chapter on SVD has been greatly expanded and now includes a presentation of PCA. The book is well illustrated and has chapter summaries and a large number of exercises throughout. It will be of interest to a wide audience including computer scientists, mathematicians, and engineers.Reviews of first edition:"Gallier's book will be a useful source for anyone interested in applications of geometrical methods to solve problems that arise in various branches of engineering. It may help to develop the sophisticated concepts from the more advanced parts of geometry into useful tools for applications." (Mathematical Reviews, 2001)"...it will be useful as a reference book for postgraduates wishing to find the connection between their current problem and the underlying geometry." (The Australian Mathematical Society, 2001)

[1]  Gerald Farin,et al.  Curves and surfaces for cagd , 1992 .

[2]  S. Lang,et al.  Introduction aux variétés différentiables , 1967 .

[3]  H. Coxeter,et al.  The Real Projective Plane , 1992 .

[4]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[7]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[8]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[9]  J. Ch. Fiorot,et al.  Courbes splines rationnelles : applications à la CAO , 1992 .

[10]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[11]  David R. Kincaid,et al.  Numerical analysis: mathematics of scientific computing (2nd ed) , 1996 .

[12]  S. Chern,et al.  Differential Geometry: Cartan's Generalization of Klein's Erlangen Program , 2000 .

[13]  Jean Fresnel Méthodes modernes en géométrie , 1996 .

[14]  R. J. Walker Algebraic curves , 1950 .

[15]  M. Gardner Non-Euclidean Geometry , 1943 .

[16]  Marie Paule Malliavin Géométrie différentielle intrinséque , 1972 .

[17]  C. Godbillon Géométrie différentielle et mécanique analytique , 1969 .

[18]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[19]  A. Gray Modern Differential Geometry of Curves and Surfaces , 1993 .

[20]  J. Dieudonné,et al.  Algèbre linéaire et géométrie élémentaire , 1967 .

[21]  G. Ziegler Lectures on Polytopes , 1994 .

[22]  Dimitris N. Metaxas Physics-Based Deformable Models , 1996 .

[23]  Wolfgang Böhm,et al.  Geometric concepts for geometric design , 1993 .

[24]  S. Lang Differential and Riemannian Manifolds , 1996 .

[25]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[26]  I. Holopainen Riemannian Geometry , 1927, Nature.

[27]  G. M.,et al.  Projective Geometry , 1938, Nature.

[28]  D. Hilbert,et al.  Geometry and the Imagination , 1953 .

[29]  H. Weyl The Classical Groups , 1940 .

[30]  G. Farin NURB curves and surfaces: from projective geometry to practical use , 1995 .

[31]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[32]  Daniel Lehmann Géométrie et topologie des surfaces , 1982 .

[33]  H. Coxeter,et al.  Introduction to Geometry , 1964, The Mathematical Gazette.

[34]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[35]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling , 1989 .

[36]  Jean-Jacques Risler Mathematical methods for CAD , 1992 .

[37]  J. Ch. Fiorot,et al.  Courbes et surfaces rationnelles : applications a la CAO , 1989 .

[38]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[39]  Jean Gallier Embedding an Affine Space in a Vector Space , 2001 .

[40]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[41]  Fujio Yamaguchi,et al.  Computer-Aided Geometric Design , 2002, Springer Japan.

[42]  M. D. Carmo Differential forms and applications , 1994 .

[43]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[44]  Bernard Gostiaux,et al.  Géométrie différentielle : variétés, courbes et surfaces , 1992 .

[45]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[46]  J. Gallier Curves and surfaces in geometric modeling: theory and algorithms , 1999 .

[47]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[48]  B. Barsky,et al.  An Introduction to Splines for Use in Computer Graphics and Geometric Modeling , 1987 .

[49]  J. Stoker Differential Geometry: Stoker/Differential , 1988 .