Graphene terahertz uncooled bolometers

We propose the concept of a terahertz (THz) uncooled bolometer based on n-type and p-type graphene layers (GLs), constituting the absorbing regions, connected by an array of undoped graphene nanoribbons (GNRs). The GLs absorb the THz radiation with the GNR array playing the role of the barrier region (resulting in nGL-GNR-pGL bolometer). The absorption of the incident THz radiation in the GL n- and p- regions leads to variations of the effective temperature of electrons and holes and of their Fermi energy resulting in the variation of the current through the GNRs. Using the proposed device model, we calculate the dark current and the bolometer responsivity as functions of the GNR energy gap, applied voltage and the THz frequency. We demonstrate that the proposed bolometer can surpass the hot-electron bolometers using traditional semiconductor heterostructures. (Some figures may appear in colour only in the online journal)

[1]  John L. Reno,et al.  Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors , 2002 .

[2]  Hirokazu Fukidome,et al.  Graphene-based devices in terahertz science and technology , 2012 .

[3]  F. Xia,et al.  Photocurrent imaging and efficient photon detection in a graphene transistor. , 2009, Nano letters.

[4]  B. LeRoy,et al.  Graphene on hexagonal boron nitride , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[6]  C. Berger,et al.  Ultrafast Relaxation of Excited Dirac Fermions in Epitaxial Graphene Using Optical Differential Transmission Spectroscopy , 2008 .

[7]  Farhan Rana,et al.  Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. , 2008, Nano letters.

[8]  M. Potemski,et al.  Dirac electronic states in graphene systems: optical spectroscopy studies , 2010, 1004.2949.

[9]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[10]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[11]  Vladimir Mitin,et al.  Toward the creation of terahertz graphene injection laser , 2011 .

[12]  S. Luryi,et al.  Carrier Scattering in Metals and Semiconductors , 2012 .

[13]  Michael G. Spencer,et al.  Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene , 2009, 0901.0274.

[14]  Christian Ertler,et al.  Hot phonon effects on the high-field transport in metallic carbon nanotubes , 2006 .

[15]  F. Rana,et al.  Graphene Terahertz Plasmon Oscillators , 2007, IEEE Transactions on Nanotechnology.

[16]  Thomas Elsaesser,et al.  Ultrafast nonequilibrium carrier dynamics in a single graphene layer , 2011 .

[17]  V. Ryzhii,et al.  Graphene bilayer field-effect phototransistor for terahertz and infrared detection , 2009, 0901.3409.

[18]  Andrew G. Glen,et al.  APPL , 2001 .

[19]  V. Ryzhii,et al.  Terahertz and infrared detectors based on graphene structures , 2011 .

[20]  H. Dai,et al.  Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. , 2008, Physical review letters.

[21]  L. Falkovsky,et al.  Space-time dispersion of graphene conductivity , 2006, cond-mat/0606800.

[22]  S. Nayak,et al.  Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. , 2011, Nano letters.

[23]  D. Ferry,et al.  Room temperature velocity saturation in intrinsic graphene , 2009 .

[24]  John L. Reno,et al.  Single-quantum-well grating-gated terahertz plasmon detectors , 2005 .

[25]  Alma Wickenden,et al.  Hot optical phonon decay in carbon nanotubes , 2008 .

[26]  Vladimir Mitin,et al.  Effect of Heating and Cooling of Photogenerated Electron–Hole Plasma in Optically Pumped Graphene on Population Inversion , 2011 .

[27]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[28]  V. Ryzhii,et al.  Device Model for Graphene Nanoribbon Phototransistor , 2008, 0804.1833.

[29]  D. Veksler,et al.  Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible , 2008, 0801.3302.

[30]  V. Ryzhii,et al.  Photoconductivity of intrinsic graphene , 2008 .

[31]  Phaedon Avouris,et al.  Phonon populations and electrical power dissipation in carbon nanotube transistors. , 2009, Nature nanotechnology.

[32]  F. T. Vasko,et al.  Nonequilibrium carriers in intrinsic graphene under interband photoexcitation , 2008, 0807.1590.

[33]  Xiang Zhang,et al.  Double-layer graphene optical modulator. , 2012, Nano letters.

[34]  M. Ryzhii,et al.  Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures , 2009, 0908.2488.

[35]  Jiwoong Park,et al.  Imaging of photocurrent generation and collection in single-layer graphene. , 2009, Nano letters.

[36]  Michael S. Shur,et al.  Double graphene-layer plasma resonances terahertz detector , 2012 .

[37]  C. Franchini Hybrid functionals applied to perovskites , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  M. Shur,et al.  Plasma mechanisms of resonant terahertz detection in a two-dimensional electron channel with split gates , 2007, 0709.2462.

[39]  Jiwoong Park,et al.  Ultrafast relaxation dynamics of hot optical phonons in graphene , 2009, 0909.4912.

[40]  A. Balandin,et al.  Thermal Conduction in Suspended Graphene Layers , 2010 .

[41]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.