Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases

This review summarizes results concerning molecular interactions of nucleic acid bases as revealed by advanced ab initio quantum chemical (QM) calculations published in last few years. We first explain advantages and limitations of modern QM calculations of nucleobases and provide a brief history of this still rather new field. Then we provide an overview of key electronic properties of standard and selected modified nucleobases, such as their charge distributions, dipole moments, polarizabilities, proton affinities, tautomeric equilibria, and amino group hybridization. Then we continue with hydrogen bonding of nucleobases, by analyzing energetics of standard base pairs, mismatched base pairs, thio‐base pairs, and others. After this, the nature of aromatic stacking interactions is explained. Also, nonclassical interactions in nucleic acids such as interstrand bifurcated hydrogen bonds, interstrand close amino group contacts, C—H … O interbase contacts, sugar–base stacking, intrinsically nonplanar base pairs, out‐of‐plane hydrogen bonds, and amino–acceptor interactions are commented on. Finally, we overview recent calculations on interactions between nucleic acid bases and metal cations. These studies deal with effects of cation binding on the strength of base pairs, analysis of specific differences among cations, such as the difference between zinc and magnesium, the influence of metalation on protonation and tautomeric equlibria of bases, and cation–π interactions involving nucleobases. In this review, we do not provide methodological details, as these can be found in our preceding reviews. The interrelation between advanced QM approaches and classical molecular dynamics simulations is briefly discussed. © 2002 Wiley Periodicals, Inc. Biopoly (Nucleic Acid Sci) 61: 3–31, 2002; DOI 10.1002/bip.10048

[1]  J. Šponer,et al.  How Nucleobases Rotate When Bonded to a Metal Ion: Detailed View from an Ab Initio Quantum Chemical Study of a Cytosine Complex of trans-a2PtII , 2001 .

[2]  Jiří Šponer,et al.  Hydrogen bonding, stacking and cation binding of DNA bases , 2001 .

[3]  J. Šponer,et al.  Protonation of platinated adenine nucleobases. Gas phase vs condensed phase picture. , 2001, Inorganic chemistry.

[4]  Pavel Hobza,et al.  Interactions of Hydrated Mg2+ Cation with Bases, Base Pairs, and Nucleotides. Electron Topology, Natural Bond Orbital, Electrostatic, and Vibrational Study , 2001 .

[5]  P Hobza,et al.  At nonzero temperatures, stacked structures of methylated nucleic acid base pairs and microhydrated nonmethylated nucleic acid base pairs are favored over planar hydrogen-bonded structures: a molecular dynamics simulations study. , 2001, Chemistry.

[6]  S. Grzesiek,et al.  A DFT study of the interresidue dependencies of scalar J-coupling and magnetic shielding in the hydrogen-bonding regions of a DNA triplex. , 2001, Journal of the American Chemical Society.

[7]  N. Rösch,et al.  Electronic coupling between Watson–Crick pairs for hole transfer and transport in desoxyribonucleic acid , 2001 .

[8]  J. Šponer,et al.  Structural dynamics and cation interactions of DNA quadruplex molecules containing mixed guanine/cytosine quartets revealed by large-scale MD simulations. , 2001, Journal of the American Chemical Society.

[9]  J. Czernek An ab Initio Study of Hydrogen Bonding Effects on the 15N and 1H Chemical Shielding Tensors in the Watson−Crick Base Pairs , 2001 .

[10]  Jan Reedijk,et al.  Ruthenium(III) Coordination to the Exocyclic Nitrogen of 9‐Methyladenine and Stabilisation of the Rare Imine Tautomer by Intramolecular Hydrogen Bonding , 2001 .

[11]  M. Raimondi,et al.  Ab Initio Study of the Crystallographic Solvation Pattern of the Cytosine-Guanine Base Pair in DNA , 2001 .

[12]  Thomas Steinke,et al.  Density functional study of guanine and uracil quartets and of guanine quartet/metal ion complexes , 2001, J. Comput. Chem..

[13]  Eyal Nir,et al.  Pairing of isolated nucleic-acid bases in the absence of the DNA backbone , 2022 .

[14]  H. Ng,et al.  Local conformational variations observed in B-DNA crystals do not improve base stacking: computational analysis of base stacking in a d(CATGGGCCCATG)(2) B<-->A intermediate crystal structure. , 2000, Nucleic acids research.

[15]  J. V. Ortiz,et al.  Electron Propagator Theory of Guanine and Its Cations: Tautomerism and Photoelectron Spectra , 2000 .

[16]  M. Nguyen,et al.  DFT study of the interaction between guanine and water , 2000 .

[17]  S. Neidle,et al.  Structural characterization of a guanine-quadruplex ligand complex. , 2000, Biochemistry.

[18]  R. Sigel,et al.  Effects of N7-methylation, N7-platination, and C8-hydroxylation of guanine on H-bond formation with cytosine: platinum coordination strengthens the Watson-Crick pair , 2000, Journal of Biological Inorganic Chemistry.

[19]  J. Sühnel,et al.  Water-Mediated Base Pairs in RNA: A Quantum-Chemical Study , 2000 .

[20]  T. Ramasami,et al.  Does a stacked DNA base pair hydrate better than a hydrogen-bonded one? An ab initio study , 2000 .

[21]  F. J. Luque,et al.  Theoretical Methods for the Description of the Solvent Effect in Biomolecular Systems. , 2000, Chemical reviews.

[22]  Arieh Warshel,et al.  Free-Energy Perturbation Calculations of DNA Destabilization by Base Substitutions: The Effect of Neutral Guanine·Thymine, Adenine·Cytosine and Adenine·Difluorotoluene Mismatches , 2000 .

[23]  M. Sekine,et al.  The hydrogen bond energy on mismatched base pair formation between uracil derivatives and guanine in the gas phase and in the aqueous phase , 2000 .

[24]  C. Desfrançois,et al.  Weakly bound clusters of biological interest. , 2000, Chemical reviews.

[25]  M. Colvin,et al.  Guanine−Cytosine Base Pairs in Parallel-Stranded DNA: An ab Initio Study of the Keto−Amino Wobble Pair versus the Enol−Imino Minor Tautomer Pair , 2000 .

[26]  P. Armentrout,et al.  Noncovalent Interactions of Nucleic Acid Bases (Uracil, Thymine, and Adenine) with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies , 2000 .

[27]  T Schlick,et al.  A-Tract bending: insights into experimental structures by computational models. , 2000, Journal of molecular biology.

[28]  Manish Kumar Shukla,et al.  An ab initio study of excited states of guanine in the gas phase and aqueous media: Electronic transitions and mechanism of spectral oscillations , 2000, J. Comput. Chem..

[29]  J. Šponer,et al.  Nanosecond Molecular Dynamics of Zipper-like DNA Duplex Structures Containing Sheared G·A Mismatch Pairs , 2000 .

[30]  J. Leszczynski,et al.  Protonation of Nucleic Acid Bases. A Comprehensive Post-Hartree−Fock Study of the Energetics and Proton Affinities , 2000 .

[31]  F. J. Luque,et al.  Molecular Dynamics Study of Oligonucleotides Containing Difluorotoluene , 2000 .

[32]  J. Šponer,et al.  C−H···O Contacts in the Adenine···Uracil Watson−Crick and Uracil···Uracil Nucleic Acid Base Pairs: Nonempirical ab Initio Study with Inclusion of Electron Correlation Effects , 2000 .

[33]  Jerzy Leszczynski,et al.  A Remarkable Alteration in the Bonding Pattern: An HF and DFT Study of the Interactions between the Metal Cations and the Hoogsteen Hydrogen-Bonded G-Tetrad , 2000 .

[34]  J. Šponer,et al.  Cation—π and Amino-Acceptor Interactions Between Hydrated Metal Cations and DNA Bases. A Quantum-Chemical View , 2000, Journal of biomolecular structure & dynamics.

[35]  M. Bansal,et al.  Effect of Coordinated Ions on Structure and Flexibility of Parallel G-quadruplexes: A Molecular Dynamics Study , 2000, Journal of biomolecular structure & dynamics.

[36]  J. Koča,et al.  Unrestrained Molecular Dynamics Simulations of [d(AT)5]2 Duplex in Aqueous Solution: Hydration and Binding of Sodium Ions in the Minor Groove , 2000 .

[37]  Antonino Famulari,et al.  Interaction of Ia and IIa Group Cations with the Guanine Site in Cytosine-guanine Nucleic Acid Base Pair: An Ab Initio Hartree Fock Study in the Absence of Basis Set Superposition Error , 2000, Comput. Chem..

[38]  J. SantaLucia,et al.  Thermodynamic parameters for DNA sequences with dangling ends. , 2000, Nucleic acids research.

[39]  Noriyuki Kurita,et al.  Density Functional MO Calculation for Stacked DNA Base-pairs with Backbones , 2000, Comput. Chem..

[40]  P. Hobza,et al.  Interaction Energies of Hydrogen-Bonded Formamide Dimer, Formamidine Dimer, and Selected DNA Base Pairs Obtained with Large Basis Sets of Atomic Orbitals , 2000 .

[41]  J. G. Snijders,et al.  Hydrogen Bonding in DNA Base Pairs: Reconciliation of Theory and Experiment , 2000 .

[42]  J. Leszczynski,et al.  The interactions of square platinum(II) complexes with guanine and adenine: a quantum-chemical ab initio study of metalated tautomeric forms , 2000, JBIC Journal of Biological Inorganic Chemistry.

[43]  P. Hobza,et al.  Global Minimum of the Adenine···Thymine Base Pair Corresponds Neither to Watson−Crick Nor to Hoogsteen Structures. Molecular Dynamic/Quenching/AMBER and ab Initio beyond Hartree−Fock Studies , 2000 .

[44]  M. Tomasz,et al.  Hydrogen-Bond Acid/Base Catalysis: A Density Functional Theory Study of Protonated Guanine-(Substituted) Cytosine Base Pairs as Models for Nucleophilic Attack on Mitomycin in DNA , 2000 .

[45]  K. Seff,et al.  Crystal Structures of Fully La3+-Exchanged Zeolite X: an Intrazeolitic La2O3 Continuum, Hexagonal Planar and Trigonally Monocapped Trigonal Prismatic Coordination , 2000 .

[46]  C. Alemán The keto–amino/enol tautomerism of cytosine in aqueous solution. A theoretical study using combined discrete/self-consistent reaction field models , 2000 .

[47]  Schettino,et al.  Interaction between aromatic residues. Molecular dynamics and ab initio exploration of the potential energy surface of the tryptophan-histidine pair , 2000 .

[48]  D. Bondarev,et al.  Nature of Intercalator Amiloride−Nucelobase Stacking. An Empirical Potential and ab Initio Electron Correlation Study , 2000 .

[49]  A. Napoli,et al.  Survey of the proton affinities of adenine, cytosine, thymine and uracil dideoxyribonucleosides, deoxyribonucleosides and ribonucleosides. , 2000, Journal of mass spectrometry : JMS.

[50]  J. Šponer,et al.  Chapter 3 – Computational Approaches to the Studies of the Interactions of Nucleic Acid Bases , 1999 .

[51]  A. Colson Chapter 7 – Application of Molecular Orbital Theory to the Elucidation of Radical Processes Induced by Radiation Damage to DNA , 1999 .

[52]  I. Zilberberg,et al.  cis-[Pt(NH3)2]2+ coordination to the N7 and O6 sites of a guanine–cytosine pair: disruption of the Watson–Crick H-bonding pattern , 1999 .

[53]  Jerzy Leszczynski,et al.  Metal-Stabilized Rare Tautomers and Mispairs of DNA Bases: N6-Metalated Adenine and N4-Metalated Cytosine, Theoretical and Experimental Views , 1999 .

[54]  Célia Fonseca Guerra,et al.  The Nature of the Hydrogen Bond in DNA Base Pairs: The Role of Charge Transfer and Resonance Assistance , 1999 .

[55]  Nohad Gresh,et al.  Complexes of Pentahydrated Zn2+with Guanine, Adenine, and the Guanine−Cytosine and Adenine−Thymine Base Pairs. Structures and Energies Characterized by Polarizable Molecular Mechanics and ab Initio Calculations , 1999 .

[56]  T. Uchimaru,et al.  An ab Initio Investigation of the Reactions of 1,1- and 1,2-Dichloroethane with Hydroxyl Radical , 1999 .

[57]  L. Adamowicz,et al.  p-Quinone Dimers: H-Bonding vs Stacked Interaction. Matrix-Isolation Infrared and ab Initio Study , 1999 .

[58]  J. Šponer,et al.  Crystal structure of d(GGCCAATTGG) complexed with DAPI reveals novel binding mode. , 1999, Biochemistry.

[59]  C. Ehresmann,et al.  The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. , 1999, Structure.

[60]  Francois Gygi,et al.  An ab initio study of DNA base pair hydrogen bonding: a comparison of plane-wave versus Gaussian-type function methods , 1999 .

[61]  M. Nguyen,et al.  Protonation and Deprotonation Enthalpies of Guanine and Adenine and Implications for the Structure and Energy of Their Complexes with Water: Comparison with Uracil, Thymine, and Cytosine , 1999 .

[62]  P Hobza,et al.  Structure, energetics, and dynamics of the nucleic Acid base pairs: nonempirical ab initio calculations. , 1999, Chemical reviews.

[63]  M. Ghomi,et al.  Ground State Properties of the Nucleic Acid Constituents Studied by Density Functional Calculations. I. Conformational Features of Ribose, Dimethyl Phosphate, Uridine, Cytidine, 5‘-Methyl Phosphate−Uridine, and 3‘-Methyl Phosphate−Uridine , 1999 .

[64]  Fonseca Guerra C,et al.  Charge Transfer and Environment Effects Responsible for Characteristics of DNA Base Pairing. , 1999, Angewandte Chemie.

[65]  R. Eritja,et al.  Crystal structure of a DNA Holliday junction , 1999, Nature Structural Biology.

[66]  J. Šponer,et al.  Metal ions in non-complementary DNA base pairs: an ab initio study of Cu(I), Ag(I), and Au(I) complexes with the cytosine-adenine base pair , 1999, JBIC Journal of Biological Inorganic Chemistry.

[67]  M. Sekine,et al.  Ab Initio and Density Functional Studies of Substituent Effects of an A−U Base Pair on the Stability of Hydrogen Bonding , 1999 .

[68]  Y. Kitagawa,et al.  EXPERIMENTAL AND THEORETICAL STUDIES ON THE SELECTIVITY OF GGG TRIPLETS TOWARD ONE-ELECTRON OXIDATION IN B-FORM DNA , 1999 .

[69]  Gilles Ohanessian,et al.  A Quantitative Basis for a Scale of Na+ Affinities of Organic and Small Biological Molecules in the Gas Phase , 1999 .

[70]  F. Javier Luque,et al.  Observation of Spontaneous Base Pair Breathing Events in the Molecular Dynamics Simulation of a Difluorotoluene-Containing DNA Oligonucleotide , 1999 .

[71]  K. Klika,et al.  Platination of the Exocyclic Amino Group of the Adenine Nucleobase by PtII Migration , 1999 .

[72]  J. Šponer,et al.  Interactions of hydrated IIa and IIb group metal cations with thioguanine-cytosine DNA base pair: Ab initio and density functional theory investigation of polarization effects, differences among cations, and flexibility of the cation hydration shell. , 1999, Journal of biomolecular structure & dynamics.

[73]  C. Cramer,et al.  Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. , 1999, Chemical reviews.

[74]  V. Marathias,et al.  6-Thioguanine alters the structure and stability of duplex DNA and inhibits quadruplex DNA formation. , 1999, Nucleic acids research.

[75]  N. Sugimoto,et al.  Nucleic acid duplex stability: influence of base composition on cation effects. , 1999, Nucleic acids research.

[76]  M. Colvin,et al.  Interaction and solvation energies of nonpolar DNA base analogues and their role in polymerase insertion fidelity. , 1999, Journal of biomolecular structure & dynamics.

[77]  J. Šponer,et al.  NANOSECOND MOLECULAR DYNAMICS SIMULATIONS OF PARALLEL AND ANTIPARALLEL GUANINE QUADRUPLEX DNA MOLECULES , 1999 .

[78]  J. Sühnel,et al.  Quantum-Chemical Study of a Water-Mediated Uracil−Cytosine Base Pair , 1999 .

[79]  H. Masuda,et al.  Nucleobase Stacking Evidenced on Ternary Metal (Palladium(II), Copper(II)) Complexes with Nucleobase Amino Acids and Aromatic Diimines. , 1999, Inorganic Chemistry.

[80]  A. Warshel,et al.  Thermodynamic Parameters for Stacking and Hydrogen Bonding of Nucleic Acid Bases in Aqueous Solution: Ab Initio/Langevin Dipoles Study , 1999 .

[81]  L. Williams,et al.  Divalent cations stabilize unstacked conformations of DNA and RNA by interacting with base pi systems. , 1998, Biochemistry.

[82]  J. Šponer,et al.  Reverse Watson-Crick Isocytosine-Cytosine and Guanine-Cytosine Base Pairs Stabilized by the Formation of the Minor Tautomers of Bases. An ab Initio Study in the Gas Phase and in a Water Cluster , 1998 .

[83]  Hiroshi Sugiyama,et al.  Mapping of the Hot Spots for DNA Damage by One-Electron Oxidation: Efficacy of GG Doublets and GGG Triplets as a Trap in Long-Range Hole Migration , 1998 .

[84]  E Westhof,et al.  Conserved geometrical base-pairing patterns in RNA , 1998, Quarterly Reviews of Biophysics.

[85]  F. Javier Luque,et al.  Molecular Dynamics Simulations in Aqueous Solution of Triple Helices Containing d(G·C·C) Trios , 1998 .

[86]  J. Leszczynski,et al.  Specific Solvation Effects on Structures and Properties of Isocytosine−Cytosine Complexes: A Theoretical ab Initio Study , 1998 .

[87]  J. Šponer,et al.  Uracil Dimer: Potential Energy and Free Energy Surfaces. Ab Initio beyond Hartree−Fock and Empirical Potential Studies , 1998 .

[88]  J. Šponer,et al.  Stabilization of the purine.purine.pyrimidine DNA base triplets by divalent metal cations. , 1998, Journal of biomolecular structure & dynamics.

[89]  Mariona Sodupe,et al.  Single versus Double Proton-Transfer Reactions in Watson−Crick Base Pair Radical Cations. A Theoretical Study , 1998 .

[90]  T. Prangé,et al.  A zipper-like duplex in DNA: the crystal structure of d(GCGAAAGCT) at 2.1 A resolution. , 1998, Structure.

[91]  J. Leszczynski,et al.  THE SPECIFIC SOLVATION EFFECTS ON THE STRUCTURES AND PROPERTIES OF ADENINE-URACIL COMPLEXES : A THEORETICAL AB INITIO STUDY , 1998 .

[92]  Nidhi Arora,et al.  Energetics of Base Pairs in B-DNA in Solution: An Appraisal of Potential Functions and Dielectric Treatments , 1998 .

[93]  F. J. Luque,et al.  On the potential role of the amino nitrogen atom as a hydrogen bond acceptor in macromolecules. , 1998, Journal of molecular biology.

[94]  J. Šponer,et al.  Interaction between the Guanine−Cytosine Watson−Crick DNA Base Pair and Hydrated Group IIa (Mg2+, Ca2+, Sr2+, Ba2+) and Group IIb (Zn2+, Cd2+, Hg2+) Metal Cations , 1998 .

[95]  A. Nguyen,et al.  Theoretical Study of the Interaction between Thymine and Water. Protonation and Deprotonation Enthalpies and Comparison with Uracil , 1998 .

[96]  J. Šponer,et al.  Molecular Dynamics of Hemiprotonated Intercalated Four-Stranded i-DNA: Stable Trajectories on a Nanosecond Scale , 1998 .

[97]  F. J. Luque,et al.  TAUTOMERISM OF 1-METHYL DERIVATIVES OF URACIL, THYMINE, AND 5-BROMOURACIL.IS TAUTOMERISM THE BASIS FOR THE MUTAGENICITY OF 5-BROMOURIDINE? , 1998 .

[98]  Jerzy Leszczynski,et al.  Intramolecular Proton Transfer in Mono- and Dihydrated Tautomers of Guanine: An ab Initio Post Hartree−Fock Study , 1998 .

[99]  Jerzy Leszczynski,et al.  THE POTENTIAL ENERGY SURFACE OF GUANINE IS NOT FLAT : AN AB INITIO STUDY WITH LARGE BASIS SETS AND HIGHER ORDER ELECTRON CORRELATION CONTRIBUTIONS , 1998 .

[100]  E. Freisinger,et al.  Affinity of the Iminooxo Tautomer Anion of 1‐Methylcytosine in trans‐[Pt(NH3)2(1‐MeC‐N4)2]2+ for Heterometals , 1998 .

[101]  J. SantaLucia,et al.  A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Kendall N. Houk,et al.  EFFECT OF GUANINE STACKING ON THE OXIDATION OF 8-OXOGUANINE IN B-DNA , 1998 .

[103]  Jerzy Leszczynski,et al.  Thioguanine and Thiouracil: Hydrogen-Bonding and Stacking Properties , 1997 .

[104]  D. Gray,et al.  Derivation of nearest-neighbor properties from data on nucleic acid oligomers. I. Simple sets of independent sequences and the influence of absent nearest neighbors. , 1997, Biopolymers.

[105]  J. Sühnel,et al.  Quantum-chemical ab initio study on the adenine-difluorotoluene complex--a mimic for the adenine-thymine base pair. , 1997, Journal of biomolecular structure & dynamics.

[106]  J. Šponer,et al.  Interaction of DNA Base Pairs with Various Metal Cations (Mg2+, Ca2+, Sr2+, Ba2+, Cu+, Ag+, Au+, Zn2+, Cd2+, and Hg2+): Nonempirical ab Initio Calculations on Structures, Energies, and Nonadditivity of the Interaction , 1997 .

[107]  S. R. Gadre,et al.  Structure and Stability of DNA Base Trimers: An Electrostatic Approach , 1997 .

[108]  P. Hobza,et al.  Comment on “Electron-Correlated Calculations of Electric Properties of Nucleic Acid Bases” , 1997 .

[109]  L. Adamowicz,et al.  H-Bonded and Stacked Dimers of Pyrimidine and p-Benzoquinone. A Combined Matrix Isolation Infrared and Theoretical ab Initio Study , 1997 .

[110]  M. Orozco,et al.  Solvent effects on tautomerism equilibria in heterocycles , 1997 .

[111]  Pavel Hobza,et al.  Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree–Fock method for interaction of DNA bases: Comparison with nonempirical beyond Hartree–Fock results , 1997 .

[112]  Markus P. Fülscher,et al.  A Theoretical Study of the Electronic Spectra of Adenine and Guanine , 1997 .

[113]  P Hobza,et al.  Base-base and deoxyribose-base stacking interactions in B-DNA and Z-DNA: a quantum-chemical study. , 1997, Biophysical journal.

[114]  William A. Goddard,et al.  Distance Dependent Hydrogen Bond Potentials for Nucleic Acid Base Pairs from ab Initio Quantum Mechanical Calculations (LMP2/cc-pVTZ) , 1997 .

[115]  Anders Holmén,et al.  Calculations and Characterization of the Electronic Spectra of DNA Bases Based on ab Initio MP2 Geometries of Different Tautomeric Forms , 1997 .

[116]  F. Zamora,et al.  Metal-Stabilized Rare Tautomers of Nucleobases. 6. Imino Tautomer of Adenine in a Mixed-Nucleobase Complex of Mercury(II). , 1997, Inorganic chemistry.

[117]  J. Šponer,et al.  Hydrogen-bonded trimers of DNA bases and their interaction with metal cations: ab initio quantum-chemical and empirical potential study. , 1997, Journal of biomolecular structure & dynamics.

[118]  J. Šponer,et al.  MP2 and CCSD(T) study on hydrogen bonding, aromatic stacking and nonaromatic stacking , 1997 .

[119]  J. Šponer,et al.  Anharmonic and harmonic intermolecular vibrational modes of the DNA base pairs , 1997 .

[120]  J. Šponer,et al.  Amino groups in nucleic acid bases, aniline, aminopyridines, and aminotriazine are nonplanar: Results of correlated ab initio quantum chemical calculations and anharmonic analysis of the aniline inversion motion , 1996 .

[121]  J. Šponer,et al.  2,4-diselenouracil tautomers: structures, energies, and a comparison with uracil and 2,4-dithiouracil , 1996 .

[122]  A. Rich,et al.  Inter-strand C-H...O hydrogen bonds stabilizing four-stranded intercalated molecules: stereoelectronic effects of O4' in cytosine-rich DNA. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[123]  J. Šponer,et al.  Thermodynamic characteristics for the formation of H-bonded DNA base pairs , 1996 .

[124]  E. Zangrando,et al.  Metal-stabilized rare tautomers of nucleobases , 1996, JBIC Journal of Biological Inorganic Chemistry.

[125]  Nohad Gresh,et al.  Comparative binding energetics of Mg2+, Ca2+, Zn2+, and Cd2+ to biologically relevant ligands: Combined ab initio SCF supermolecule and molecular mechanics investigation , 1996, J. Comput. Chem..

[126]  P Hobza,et al.  Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies. , 1996, Journal of biomolecular structure & dynamics.

[127]  F. J. Luque,et al.  TAUTOMERISM AND PROTONATION OF GUANINE AND CYTOSINE. IMPLICATIONS IN THE FORMATION OF HYDROGEN-BONDED COMPLEXES , 1996 .

[128]  T. Ha,et al.  Quantum chemical study of structure, energy, rotational constants, electric dipole moments and electric field gradients of all isomeric adenines , 1996 .

[129]  Pavel Hobza,et al.  Base stacking in cytosine dimer. A comparison of correlated ab initio calculations with three empirical potential models and density functional theory calculations , 1996, J. Comput. Chem..

[130]  J. Šponer,et al.  Ab Initio Study of the Interaction of Guanine and Adenine with Various Mono- and Bivalent Metal Cations (Li+, Na+, K+, Rb+, Cs+; Cu+, Ag+, Au+; Mg2+, Ca2+, Sr2+, Ba2+; Zn2+, Cd2+, and Hg2+) , 1996 .

[131]  J. Šponer,et al.  Nonplanar DNA base pairs. , 1996, Journal of biomolecular structure & dynamics.

[132]  J. Šponer,et al.  Nature of Nucleic Acid−Base Stacking: Nonempirical ab Initio and Empirical Potential Characterization of 10 Stacked Base Dimers. Comparison of Stacked and H-Bonded Base Pairs , 1996 .

[133]  J. Florián,et al.  IR and Raman Spectra, Tautomeric Stabilities, and Scaled Quantum Mechanical Force Fields of Protonated Cytosine† , 1996 .

[134]  Jerzy Leszczynski,et al.  Spontaneous DNA Mutations Induced by Proton Transfer in the Guanine·Cytosine Base Pairs: An Energetic Perspective , 1996 .

[135]  Jerzy Leszczynski,et al.  Molecular Structure and Infrared Spectra of Adenine. Experimental Matrix Isolation and Density Functional Theory Study of Adenine 15N Isotopomers , 1996 .

[136]  J. Šponer,et al.  Base stacking and hydrogen bonding in protonated cytosine dimer: the role of molecular ion-dipole and induction interactions. , 1996, Journal of biomolecular structure & dynamics.

[137]  J. Šponer,et al.  Structures and Energies of Hydrogen-Bonded DNA Base Pairs. A Nonempirical Study with Inclusion of Electron Correlation , 1996 .

[138]  Pavel Hobza,et al.  Density functional theory and molecular clusters , 1995, J. Comput. Chem..

[139]  H. Abdoul-Carime,et al.  Laser Separation of Geometrical Isomers of Weakly Bound Molecular Complexes , 1995, Science.

[140]  L. J. Maher,et al.  Overcoming potassium-mediated triplex inhibition. , 1995, Nucleic acids research.

[141]  M. Sevilla,et al.  Elucidation of primary radiation damage in DNA through application of ab initio molecular orbital theory. , 1995, International journal of radiation biology.

[142]  J. Florián,et al.  Theoretical investigation of the molecular structure of the pi kappa DNA base pair. , 1995, Journal of biomolecular structure & dynamics.

[143]  T. S. Rao,et al.  Triplex formation at the rat neu gene utilizing imidazole and 2'-deoxy-6-thioguanosine base substitutions. , 1995, Biochemistry.

[144]  F. J. Luque,et al.  TAUTOMERISM OF NEUTRAL AND PROTONATED 6-THIOGUANINE IN THE GAS PHASE AND IN AQUEOUS SOLUTION. AN AB INITIO STUDY , 1995 .

[145]  Richard J. Hall,et al.  Tautomerism in uracil, cytosine and guanine: a comparison of electron correlation predicted by ab initio and density functional theory methods , 1995 .

[146]  E. W. Schlag,et al.  Pair Formation of Free Nucleobases and Mononucleosides in the Gas Phase , 1994 .

[147]  Jerzy Leszczynski,et al.  Guanine, 6-thioguanine and 6-selenoguanine: ab initio HF/DZP and MP2/DZP comparative studies , 1994 .

[148]  S. Gellman,et al.  Aromatic Stacking Interactions in Aqueous Solution: Evidence That neither Classical Hydrophobic Effects nor Dispersion Forces Are Important , 1994 .

[149]  D. R. Garmer,et al.  A Comprehensive Energy Component Analysis of the Interaction of Hard and Soft Dications with Biological Ligands , 1994 .

[150]  J. Molina,et al.  Structural study of β-D-arabinofuranosyluracil derivatives with known antiviral activity: Part 2. Molecular mechanics and molecular orbital (MNDO, AM1 and PM3) calculations: a comparative study , 1994 .

[151]  Peter A. Kollman,et al.  Theoretical Investigation of the Hydrogen Bond Strengths in Guanine-Cytosine and Adenine-Thymine Base Pairs , 1994 .

[152]  J. Šponer,et al.  Nonplanar geometries of DNA bases. Ab initio second-order Moeller-Plesset study , 1994 .

[153]  J. Šponer,et al.  Sequence dependent intrinsic deformability of the DNA base amino groups. An ab initio quantum chemical analysis , 1994 .

[154]  N. Burton,et al.  Assessment of quantum mechanical continuum models of solvation: the prediction of tautomer equilibria, partition coefficients and amine basicity , 1993 .

[155]  J. Šponer,et al.  Theoretical analysis of the base stacking in DNA: choice of the force field and a comparison with the oligonucleotide crystal structures. , 1993, Journal of biomolecular structure & dynamics.

[156]  M. Guéron,et al.  A tetrameric DNA structure with protonated cytosine-cytosine base pairs , 1993, Nature.

[157]  C. Hunter,et al.  Sequence-dependent DNA structure. The role of base stacking interactions. , 1993, Journal of molecular biology.

[158]  Richard Lavery,et al.  Force field for platinum binding to adenine , 1993, J. Comput. Chem..

[159]  J. Leszczynski,et al.  Molecular structures of metal suboxides M2O (M = boron, aluminum, gallium): bent or linear? , 1992 .

[160]  J. Leszczynski Are the amino groups in the nucleic acid bases coplanar with the molecular rings? Ab initio HF/6‐31G* and MP2/6‐31G* studies , 1992 .

[161]  B Honig,et al.  The electrostatic contribution to DNA base‐stacking interactions , 1992, Biopolymers.

[162]  J. Leszczynski Tautomerism of Uracil: The Final Chapter? Fourth-Order Electron Correlation Contributions to the Relative Energies of Tautomers , 1992 .

[163]  R. Bader,et al.  A quantum theory of molecular structure and its applications , 1991 .

[164]  Angelo Liguori,et al.  Gas-phase proton affinity of deoxyribonucleosides and related nucleobases by fast atom bombardment tandem mass spectrometry , 1990 .

[165]  B. Rode,et al.  The influence of Li+, Na+, Mg2+, Ca2+, and Zn2+ ions on the hydrogen bonds of the Watson–Crick base pairs , 1990, Biopolymers.

[166]  K. Kubulat,et al.  Matrix isolation infrared studies of nucleic acid constituents. 5. Experimental matrix-isolation and theoretical ab initio SCF molecular orbital studies of the infrared spectra of cytosine monomers , 1988 .

[167]  M. Aida Characteristics of the Watson‐Crick type hydrogen‐bonded DNA base pairs: An ab initio molecular orbital study , 1988 .

[168]  M. Aida,et al.  An ab initio molecular orbital study on the sequence-dependency of DNA conformation: an evaluation of intra- and inter-strand stacking interaction energy. , 1988, Journal of theoretical biology.

[169]  U Heinemann,et al.  Helix geometry, hydration, and G.A mismatch in a B-DNA decamer. , 1987, Science.

[170]  P. Hobza,et al.  Nonempirical calculations on all the 29 possible DNA base pairs , 1987 .

[171]  U. Thewalt,et al.  Metal-stabilized rare tautomers of nucleobases. 1. Iminooxo form of cytosine: formation through metal migration and estimation of the geometry of the free tautomer , 1986 .

[172]  M. Aida,et al.  An ab initio molecular orbital study on the stacking interaction between nucleic acid bases: Dependence on the sequence and relation to the conformation , 1986 .

[173]  V. Poltev,et al.  Simulation of interactions between nucleic acid bases by refined atom-atom potential functions. , 1986, Journal of biomolecular structure & dynamics.

[174]  J. D. Bene Molecular orbital theory of the hydrogen bond: XXXII. The effect of H+ and Li+ association on the AT and GC pairs , 1985 .

[175]  F. Weinhold,et al.  Natural population analysis , 1985 .

[176]  Joel F. Liebman,et al.  Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules , 1984 .

[177]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[178]  J. D. Bene Molecular orbital study of the protonation of DNA bases , 1983 .

[179]  L. Sukhodub,et al.  Experimental studies of molecular interactions between nitrogen bases of nucleic acids , 1979, Biopolymers.

[180]  M. Meot-ner Ion thermochemistry of low-volatility compounds in the gas phase. 2. Intrinsic basicities and hydrogen-bonded dimers of nitrogen heterocyclics and nucleic bases , 1979 .

[181]  M. Clarke Electrochemistry, synthesis, and spectra of pentaammineruthenium(III) complexes of cytidine, adenosine, and related ligands , 1978 .

[182]  M. Sundaralingam,et al.  Stereochemistry of nucleic acids and their constituents. X. solid‐slate base‐slacking patterns in nucleic acid constituents and polynucleotides , 1971, Biopolymers.

[183]  J. Pitha,et al.  THE SPECIFICITY OF HYDROGEN BOND FORMATION BETWEEN DERIVATIVES OF NUCLEIC ACID BASES AND SOME ANALOGUES , 1966 .

[184]  S. Chan,et al.  Interaction and association of bases and nucleosides in aqueous solutions. IV. Proton magnetic resonance studies of the association of pyrimidine nucleosides and their interactions with purine. , 1963, Journal of the American Chemical Society.

[185]  M. Gilson,et al.  The physical basis of nucleic acid base stacking in water. , 2001, Biophysical journal.

[186]  S. Volkov,et al.  Preopening of the DNA base pairs , 2001 .

[187]  J. Šponer,et al.  Molecular dynamics of DNA quadruplex molecules containing inosine, 6-thioguanine and 6-thiopurine. , 2001, Biophysical journal.

[188]  P. Hobza,et al.  Already two water molecules change planar H-bonded structures of the adenine···thymine base pair to the stacked ones: a molecular dynamics simulations study , 2000 .

[189]  Y. Ishikawa,et al.  Gaussian-2 theoretical and direct ab initio molecular dynamics study of the reaction of O(3P) with thiirane, O(3P) + C2H4S(1A1)→SO(3Σ−) + C2H4(1Ag) , 2000 .

[190]  M. Shukla,et al.  Investigations of the excited-state properties of isocytosine: An ab initio approach , 2000 .

[191]  M. Ghomi,et al.  The peculiar role of cytosine in nucleoside conformational behaviour: Hydrogen bond donor capacity of nucleic bases , 2000 .

[192]  R. Sigel,et al.  PtII coordination to guanine-N7: enhancement of the stability of the Watson–Crick base pair with cytosine , 1999 .

[193]  M. Raimondi,et al.  Spin‐coupled study of hydrogen‐bonded systems: The Nucleic Acid Pairs , 1999 .

[194]  A. Rendell,et al.  Electrostatic investigation of metal cation binding to DNA bases and base pairs , 1998 .

[195]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[196]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[197]  H. Schneider,et al.  Intercalation mechanisms with ds-DNA: binding modes and energy contributions with benzene, naphthalene, quinoline and indole derivatives including some antimalarials † , 1997 .

[198]  J. Šponer,et al.  H-Bonded and Stacked DNA Base Pairs: Cytosine Dimer. An Ab Initio Second-Order Moeller-Plesset Study , 1995 .

[199]  Charles W. Bock,et al.  Hydration of Zinc Ions: A Comparison with Magnesium and Beryllium Ions , 1995 .

[200]  K. Szczepaniak,et al.  Matrix isolation infrared studies of nucleic acid constituents: Part 4. Guanine and 9-methylguanine monomers and their keto—enol tautomerism☆ , 1987 .

[201]  B. Rode,et al.  The influence of Mg2+ ion on the hydrogen bonds of the adeninethymine base pair , 1983 .

[202]  J. Sühnel,et al.  Molecular Dynamics Simulation Reveals Conformational Switching of Water-Mediated Uracil-Cytosine Base Pairs in an RNA Duplex , 2022 .