An analysis of the effect of the stochastic component of urban cellular automata models

Urban cellular automata models have proved useful tools in urban growth prediction because of their simplicity and their ability to reproduce complex emergent dynamics. Complex emergent dynamic systems involve processes that are difficult to predict, in which randomness plays a key role. In view of the fact that randomness is particularly relevant to complex processes, the aim of this paper is to analyze the sensitivity of the results of urban cellular automata models to the different methods used to incorporate the stochastic component in the models. The urban growth patterns obtained using different stochastic components are analyzed and compared using a number of spatial metrics. The results show that the differences observed in the simulated patterns are sufficiently relevant to justify the need for this type of analysis, which allows for the selection of the stochastic component that best suits the dynamics of the area.

[1]  Arnaldo Cecchini Urban Modelling by Means of Cellular Automata: Generalised Urban Automata with the Help on-Line (AUGH) Model , 1996 .

[2]  Keith C. Clarke,et al.  The effect of disaggregating land use categories in cellular automata during model calibration and forecasting , 2006, Comput. Environ. Urban Syst..

[3]  Chris Webster,et al.  Simulation of natural land use zoning under free-market and incremental development control regimes , 1998 .

[4]  Xia Li,et al.  Cellular automata for simulating land use changes based on support vector machines , 2008, Comput. Geosci..

[5]  K. Seto,et al.  Quantifying Spatiotemporal Patterns of Urban Land-use Change in Four Cities of China with Time Series Landscape Metrics , 2005, Landscape Ecology.

[6]  Lin Liu,et al.  A bottom‐up approach to discover transition rules of cellular automata using ant intelligence , 2008, Int. J. Geogr. Inf. Sci..

[7]  Keith C. Clarke,et al.  A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area , 1997 .

[8]  G. D. Jenerette,et al.  © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Research Article Analysis and simulation of land-use change in the central Arizona – , 2022 .

[9]  Juval Portugali,et al.  Artificial Planning Experience by Means of a Heuristic Cell-Space Model: Simulating International Migration in the Urban Process , 1995 .

[10]  Xia Li,et al.  Data mining of cellular automata's transition rules , 2004, Int. J. Geogr. Inf. Sci..

[11]  Roger White,et al.  Cities and cellular automata , 1998 .

[12]  M Phipps,et al.  Spatial Dynamics, Cellular Automata, and Parallel Processing Computers , 1997 .

[13]  Scott J. Goetz,et al.  Analysis of scale dependencies in an urban land‐use‐change model , 2005, Int. J. Geogr. Inf. Sci..

[14]  Apostolos Lagarias,et al.  Fractal analysis of the urbanization at the outskirts of the city: Models, measurement and explanation , 2006 .

[15]  Norio Okada,et al.  Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China , 2006 .

[16]  Yichun Xie,et al.  A Generalized Model for Cellular Urban Dynamics , 2010 .

[17]  M. Batty,et al.  Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation , 2003, Comput. Environ. Urban Syst..

[18]  Narimah Samat,et al.  Characterizing the scale sensitivity of the cellular automata simulated urban growth: A case study of the Seberang Perai Region, Penang State, Malaysia , 2006, Comput. Environ. Urban Syst..

[19]  Fulong Wu,et al.  Calibration of stochastic cellular automata: the application to rural-urban land conversions , 2002, Int. J. Geogr. Inf. Sci..

[20]  Keith C. Clarke,et al.  Spatio‐temporal dynamics in California's Central Valley: Empirical links to urban theory , 2005, Int. J. Geogr. Inf. Sci..

[21]  Roger White,et al.  Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns , 1993 .

[22]  Roger White,et al.  The Use of Constrained Cellular Automata for High-Resolution Modelling of Urban Land-Use Dynamics , 1997 .

[23]  William Rand,et al.  Path dependence and the validation of agent‐based spatial models of land use , 2005, Int. J. Geogr. Inf. Sci..

[24]  Claes Andersson,et al.  Assessing the impact of temporal dynamics on land-use change modeling , 2004, Comput. Environ. Urban Syst..

[25]  Suzana Dragicevic,et al.  Assessing cellular automata model behaviour using a sensitivity analysis approach , 2006, Comput. Environ. Urban Syst..

[26]  Ian Masser,et al.  Understanding Spatial and Temporal Processes of Urban Growth: Cellular Automata Modelling , 2004 .

[27]  Xiaoping Liu,et al.  An extended cellular automaton using case‐based reasoning for simulating urban development in a large complex region , 2006 .

[28]  Xia Li,et al.  Errors and uncertainties in urban cellular automata , 2006, Comput. Environ. Urban Syst..

[29]  David Martin,et al.  Urban Expansion Simulation of Southeast England Using Population Surface Modelling and Cellular Automata , 2002 .

[30]  R. White,et al.  High-resolution integrated modelling of the spatial dynamics of urban and regional systems , 2000 .

[31]  Andrés Manuel García,et al.  Cellular automata models for the simulation of real-world urban processes: A review and analysis , 2010 .

[32]  S. An,et al.  The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China , 2007, Landscape Ecology.

[33]  Keith C. Clarke,et al.  Spatial Differences in Multi‐Resolution Urban Automata Modeling , 2004, Trans. GIS.

[34]  Ashton Shortridge,et al.  Complex systems models and the management of error and uncertainty , 2008 .

[35]  Martin Herold,et al.  The spatiotemporal form of urban growth: measurement, analysis and modeling , 2003 .

[36]  Danielle J. Marceau,et al.  Exploration of Spatial Scale Sensitivity in Geographic Cellular Automata , 2005 .

[37]  Steven M. Manson,et al.  Challenges in Evaluating Models of Geographic Complexity , 2007 .

[38]  I. Thomas,et al.  The morphology of built-up landscapes in Wallonia (Belgium): A classification using fractal indices , 2008 .

[39]  Guy Engelen,et al.  Cellular Automata as the Basis of Integrated Dynamic Regional Modelling , 1997 .