A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development.

During development, Myxococcus xanthus cells produce a series of spatial patterns by coordinating their motion through a contact-dependent signal, the C-signal. C-signaling modulates the frequency at which cells reverse their gliding direction. It does this by interacting with the Frz system (a homolog of the Escherichia coli chemosensory system) via a cascade of covalent modifications. Here we show that introducing a negative feedback into this cascade results in oscillatory behavior of the signaling circuit. The model explains several aspects of M. xanthus behavior during development, including the nonrandom distribution of reversal times, and the differences in response of the reversal frequency to both moderate and high levels of C-signaling at different developmental stages. We also propose experiments to test the model.

[1]  D. Kaiser,et al.  Cell motility is required for the transmission of C-factor, an intercellular signal that coordinates fruiting body morphogenesis of Myxococcus xanthus. , 1990, Genes & development.

[2]  D. Kaiser,et al.  Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. , 1987, Genes & development.

[3]  L Søgaard-Andersen,et al.  The FruA signal transduction protein provides a checkpoint for the temporal co‐ordination of inter‐ cellular signals in Myxococcus xanthus development , 1998, Molecular microbiology.

[4]  Roy D. Welch,et al.  Cell behavior in traveling wave patterns of myxobacteria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Dale Kaiser,et al.  Dynamics of Fruiting Body Morphogenesis , 2004, Journal of bacteriology.

[6]  A. Goldbeter,et al.  Biochemical Oscillations And Cellular Rhythms: Contents , 1996 .

[7]  D. Koshland,et al.  An amplified sensitivity arising from covalent modification in biological systems. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Kaiser,et al.  Intercellular C-signaling and the traveling waves of Myxococcus. , 1994, Genes & development.

[9]  F. Siegert,et al.  Analysis of optical density wave propagation and cell movement in the cellular slime mould Dictyostelium discoideum , 1991 .

[10]  D. Kaiser,et al.  Pulling Together with Type IV Pili , 2004, Journal of Molecular Microbiology and Biotechnology.

[11]  N. Wingreen,et al.  Dynamic structures in Escherichia coli: Spontaneous formation of MinE rings and MinD polar zones , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Zusman,et al.  Motility in Myxococcus xanthus and its role in developmental aggregation. , 1999, Current opinion in microbiology.

[13]  D. Kaiser Bacterial motility: How do pili pull? , 2000, Current Biology.

[14]  Mark S. Alber,et al.  Lattice gas cellular automation model for rippling and aggregation in myxobacteria , 2004, q-bio/0401014.

[15]  J A Sherratt,et al.  Dictyostelium discoideum: cellular self-organization in an excitable biological medium , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  S. Inouye,et al.  FruA, a putative transcription factor essential for the development of Myxococcus xanthus , 1996, Molecular microbiology.

[17]  Roy D. Welch,et al.  Pattern formation and traveling waves in myxobacteria: Theory and modeling , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Lotte Søgaard-Andersen,et al.  Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. , 2003, Genes & development.

[19]  D. Kaiser,et al.  The act operon controls the level and time of C‐signal production for Myxococcus xanthus development , 2001, Molecular microbiology.

[20]  L. Shimkets,et al.  Nucleotide sequence and transcriptional products of the csg locus of Myxococcus xanthus , 1990, Journal of bacteriology.

[21]  D Gonze,et al.  A model for a network of phosphorylation-dephosphorylation cycles displaying the dynamics of dominoes and clocks. , 2001, Journal of theoretical biology.

[22]  D. Kaiser,et al.  C-factor: A cell-cell signaling protein required for fruiting body morphogenesis of M. Xanthus , 1990, Cell.

[23]  H. Othmer,et al.  Wave propagation in aggregation fields of the cellular slime mould Dictyostelium discoideum , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[24]  S. Fields,et al.  The two-hybrid system: an assay for protein-protein interactions. , 1994, Trends in genetics : TIG.

[25]  Hans Meinhardt,et al.  The Algorithmic Beauty of Sea Shells , 2003, The Virtual Laboratory.

[26]  H. Sauro,et al.  Quantitative analysis of signaling networks. , 2004, Progress in biophysics and molecular biology.

[27]  D. Kaiser,et al.  C-factor has distinct aggregation and sporulation thresholds during Myxococcus development , 1991, Journal of bacteriology.

[28]  Ann M Stock,et al.  Histidine kinases and response regulator proteins in two-component signaling systems. , 2001, Trends in biochemical sciences.

[29]  Roy D. Welch,et al.  Waves and aggregation patterns in myxobacteria , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  F. Lutscher,et al.  Emerging Patterns in a Hyperbolic Model for Locally Interacting Cell Systems , 2003, J. Nonlinear Sci..

[31]  L. Jelsbak,et al.  The cell surface-associated intercellular C-signal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A Goldbeter,et al.  A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Lutkenhaus,et al.  MinD and role of the deviant Walker A motif, dimerization and membrane binding in oscillation , 2003, Molecular microbiology.

[34]  A. Kuspa,et al.  Control of cell density and pattern by intercellular signaling in Myxococcus development. , 1992, Annual review of microbiology.

[35]  Hans Meinhardt,et al.  The Algorithmic Beauty of Sea Shells , 1998, The Virtual Laboratory.

[36]  D. Zusman,et al.  "Frizzy" genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[37]  D. Zusman,et al.  Cell density regulates cellular reversal frequency in Myxococcus xanthus. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Zusman,et al.  "Frizzy" aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[39]  W. Margolin,et al.  Bacterial cell division: A moving MinE sweeper boggles the MinD , 2001, Current Biology.

[40]  L. Jelsbak,et al.  Pattern formation: fruiting body morphogenesis in Myxococcus xanthus. , 2000, Current opinion in microbiology.

[41]  Florian Siegert,et al.  Spiral and concentric waves organize multicellular Dictyostelium mounds , 1995, Current Biology.

[42]  Lotte Søgaard-Andersen,et al.  Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  H. Meinhardt,et al.  Pattern formation in Escherichia coli: A model for the pole-to-pole oscillations of Min proteins and the localization of the division site , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Kaiser,et al.  Cell alignment required in differentiation of Myxococcus xanthus. , 1990, Science.

[45]  D. Kaiser,et al.  C factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Kaiser,et al.  Induction of coordinated movement of Myxococcus xanthus cells , 1982, Journal of bacteriology.

[47]  D. Zusman,et al.  Regulation of directed motility in Myxococcus xanthus , 1997, Molecular microbiology.