Composite tube and plate manufacturing repeatability as determined by precision measurements of thermal strain
暂无分享,去创建一个
Composite materials often carry the reputation of demonstrating high variability in critical material properties. The JWST telescope metering structure is fabricated of several thousand separate composite piece parts. The stringent dimensional stability requirements on the metering structure require the critical thermal strain response of every composite piece be verified either at the billet or piece part level. JWST is a unique composite space structure in that it has required the manufacturing of several hundred composite billets that cover many lots of prepreg and many years of fabrication. The flight billet thermal expansion acceptance criteria limits the coefficient of thermal expansion (CTE) to a tolerance ranging between ±0.014 ppm/K to ±0.04 ppm/K around a prescribed nominal when measured from 293 K down to 40 K. The different tolerance values represent different material forms including flat plates and different tube cross-section dimensions. A precision measurement facility was developed that could measure at the required accuracy and at a pace that supported the composite part fabrication rate. The test method and facility is discussed and the results of a statistical process analysis of the flight composite billets are surveyed.
[1] Jonathan W. Arenberg,et al. The JWST backplane stability test article: a critical technology demonstration , 2006, SPIE Astronomical Telescopes + Instrumentation.