Contour reconstruction in 3-D X-ray CT

The authors derives an algorithm for reconstructing contours of an object from 3D cone beam X-ray data. By reducing the amount of the searched-for information, contours, or density jumps instead of the densities themselves, the authors are able to develop fast algorithms for data incomplete with respect to both the movement of the X-ray source and the detector reading. The method is related to local or Lambda tomography. Numerical simulations show the efficiency of the algorithm.

[1]  Kennan T. Smith,et al.  Mathematical foundations of computed tomography. , 1985, Applied optics.

[2]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[3]  Frank Natterer,et al.  Regularisierung schlecht gestellter Probleme durch Projektionsverfahren , 1977 .

[4]  A K Louis Optimal Sampling in Nuclear Magnetic Resonance (NMR) Tomography , 1982, Journal of computer assisted tomography.

[5]  Erik L. Ritman,et al.  Local tomography , 1992 .

[6]  Peter Maass,et al.  The x-ray transform: singular value decomposition and resolution , 1987 .

[7]  Bruce D. Smith Cone-beam tomography: recent advances and a tutorial review , 1990 .

[8]  P. Grangeat Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform , 1991 .

[9]  I. S. Reed,et al.  3-D Reconstruction for Diverging X-Ray Beams , 1978, IEEE Transactions on Nuclear Science.

[10]  Shepp La Computerized tomography and nuclear magnetic resonance. , 1980 .

[11]  David V. Finch CONE BEAM RECONSTRUCTION WITH SOURCES ON A CURVE , 1985 .

[12]  L. Feldkamp,et al.  Practical cone-beam algorithm , 1984 .

[13]  E L Ritman,et al.  Computed tomographic imaging of the coronary arterial tree-use of local tomography. , 1990, IEEE transactions on medical imaging.

[14]  A. Louis Inverse und schlecht gestellte Probleme , 1989 .

[15]  Alfred K. Louis,et al.  Medical imaging: state of the art and future development , 1992 .

[16]  P. Grangeat 3D Reconstruction for Diverging X-Ray Beams , 1985 .

[17]  H. Tuy AN INVERSION FORMULA FOR CONE-BEAM RECONSTRUCTION* , 1983 .

[18]  A. K. Louis,et al.  Approximate inversion of the 3 D radon transform , 1983 .

[19]  J. Chen,et al.  Implementation, investigation, and improvement of a novel cone-beam reconstruction method [SPECT] , 1992, IEEE Trans. Medical Imaging.