Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity

[1]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[2]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[3]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[4]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[5]  Melissa M. Harrison,et al.  Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease , 2013, Genetics.

[6]  George M. Church,et al.  Heritable genome editing in C. elegans via a CRISPR-Cas9 system , 2013, Nature Methods.

[7]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[8]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[9]  Xiaojun Zhu,et al.  Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos , 2013, Cell Research.

[10]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[11]  Marcello Maresca,et al.  Obligate Ligation-Gated Recombination (ObLiGaRe): Custom-designed nuclease-mediated targeted integration through nonhomologous end joining , 2013, Genome research.

[12]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[13]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[14]  G. Dianov,et al.  Mammalian Base Excision Repair: the Forgotten Archangel , 2013, Nucleic acids research.

[15]  Kevin Kim,et al.  A TALEN genome-editing system for generating human stem cell-based disease models. , 2013, Cell stem cell.

[16]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[17]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[18]  Daniel F. Voytas,et al.  Efficient TALEN-mediated gene knockout in livestock , 2012, Proceedings of the National Academy of Sciences.

[19]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[20]  Takahito Watanabe,et al.  Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases , 2012, Nature Communications.

[21]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[22]  Feng Zhang,et al.  Dissecting neural function using targeted genome engineering technologies. , 2012, ACS chemical neuroscience.

[23]  Neville E Sanjana,et al.  A transcription activator-like effector toolbox for genome engineering , 2012, Nature Protocols.

[24]  Elo Leung,et al.  Targeted Genome Editing Across Species Using ZFNs and TALENs , 2011, Science.

[25]  Susan Lindquist,et al.  Generation of Isogenic Pluripotent Stem Cells Differing Exclusively at Two Early Onset Parkinson Point Mutations , 2011, Cell.

[26]  G. Church,et al.  Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. , 2011, Nature biotechnology.

[27]  Elo Leung,et al.  A TALE nuclease architecture for efficient genome editing , 2011, Nature Biotechnology.

[28]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[29]  Feng Zhang,et al.  Selection-Free Zinc-Finger Nuclease Engineering by Context-Dependent Assembly (CoDA) , 2010, Nature Methods.

[30]  H. Sezutsu,et al.  Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. , 2010, Insect biochemistry and molecular biology.

[31]  Erin L. Doyle,et al.  Targeting DNA Double-Strand Breaks with TAL Effector Nucleases , 2010, Genetics.

[32]  H. Deveau,et al.  CRISPR/Cas system and its role in phage-bacteria interactions. , 2010, Annual review of microbiology.

[33]  E. Rebar,et al.  Genome editing with engineered zinc finger nucleases , 2010, Nature Reviews Genetics.

[34]  R. Barrangou,et al.  CRISPR/Cas, the Immune System of Bacteria and Archaea , 2010, Science.

[35]  Jens Boch,et al.  Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors , 2009, Science.

[36]  Matthew J. Moscou,et al.  A Simple Cipher Governs DNA Recognition by TAL Effectors , 2009, Science.

[37]  Ignacio Anegon,et al.  Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases , 2009, Science.

[38]  J. Orange,et al.  Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases , 2008, Nature Biotechnology.

[39]  Adam James Waite,et al.  An improved zinc-finger nuclease architecture for highly specific genome editing , 2007, Nature Biotechnology.

[40]  Gary J Becker,et al.  The National Institute of General Medical Sciences. , 2005, Journal of the American College of Radiology : JACR.

[41]  David Baltimore,et al.  Chimeric Nucleases Stimulate Gene Targeting in Human Cells , 2003, Science.

[42]  Jeffry D Sander,et al.  FLAsH assembly of TALeNs for high-throughput genome editing , 2022 .