Optimal design of ultra‐broadband, omnidirectional, and polarization‐insensitive amorphous silicon solar cells with a core‐shell nanograting structure

We systematically investigated the optical behaviors of an amorphous silicon solar cell with a core-shell nanograting structure. The horizontally propagating Bloch waves and Surface Plasmon Polariton waves lead to significant absorption enhancements and consequently short-circuit current enhancements of this structure, compared with the conventional planar one. The perpendicular carrier collection makes this structure optically thick and electronically thin. An optimal design is achieved through full-field numerical simulation, and a physical explanation is given. Our numerical results show that this configuration has ultra-broadband, omnidirectional, and polarization-insensitive responses and has a great potential in photovoltaics.

[1]  Peter Bienstman,et al.  Plasmonic absorption enhancement in organic solar cells with thin active layers , 2009 .

[2]  T. Sekigawa,et al.  Relationship between carrier diffusion lengths and defect density in hydrogenated amorphous silicon , 1997 .

[3]  M. Green,et al.  Plasmonics for photovoltaic applications , 2010 .

[4]  Jonathan Grandidier,et al.  Light Absorption Enhancement in Thin‐Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres , 2011, Advanced materials.

[5]  Martin A. Green,et al.  Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions , 2002 .

[6]  Xin Wang,et al.  High-performance silicon nanohole solar cells. , 2010, Journal of the American Chemical Society.

[7]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[8]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[9]  D. Ginger,et al.  Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. , 2010, Nano letters.

[10]  Yidong Huang,et al.  Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices , 2011 .

[11]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[12]  E. Yu,et al.  Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles , 2005 .

[13]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[14]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[15]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[16]  C. Battaglia,et al.  Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting , 2010 .

[17]  Christophe Ballif,et al.  Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler , 2010 .

[18]  Harry A Atwater,et al.  Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. , 2011, Nano letters.

[19]  T. Shimizu Staebler-Wronski Effect in Hydrogenated Amorphous Silicon and Related Alloy Films , 2004 .

[20]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[21]  Xiaofeng Li,et al.  Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells. , 2011, Optics express.

[22]  Martin A. Green,et al.  Solar cell efficiency tables (version 37) , 2011 .

[23]  Sailing He,et al.  Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres , 2011 .

[24]  Kitt Reinhardt,et al.  Broadband light absorption enhancement in thin-film silicon solar cells. , 2010, Nano letters.

[25]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[26]  Kui‐Qing Peng,et al.  Silicon Nanowires for Photovoltaic Solar Energy Conversion , 2011, Advanced materials.

[27]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .

[28]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[29]  Yidong Huang,et al.  Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells. , 2009, Optics letters.

[30]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[31]  Michael J. Burns,et al.  Efficient nanocoax‐based solar cells , 2010 .

[32]  Nathan S. Lewis,et al.  Si microwire-array solar cells , 2010 .

[33]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[34]  Gang Chen,et al.  Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. , 2010, Nano letters.

[35]  Hoi Sing Kwok,et al.  OPTICAL PROPERTIES OF EPITAXIALLY GROWN ZINC OXIDE FILMS ON SAPPHIRE BY PULSED LASER DEPOSITION , 1999 .

[36]  Sailing He,et al.  Optical nano-antennas and metamaterials , 2009 .

[37]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[38]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[39]  Yi Cui,et al.  Amorphous silicon core-shell nanowire Schottky solar cells , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[40]  Yi Cui,et al.  Effects of nanostructured back reflectors on the external quantum efficiency in thin film solar cells , 2011 .