Error Bounds for Dynamical Spectral Estimation

Dynamical spectral estimation is a well-established numerical approach for estimating eigenvalues and eigenfunctions of the Markov transition operator from trajectory data. Although the approach has been widely applied in biomolecular simulations, its error properties remain poorly understood. Here we analyze the error of a dynamical spectral estimation method called “the variational approach to conformational dynamics” (VAC). We bound the approximation error and estimation error for VAC estimates. Our analysis establishes VAC’s convergence properties and suggests new strategies for tuning VAC to improve accuracy.

[1]  Erik H. Thiede,et al.  Integrated VAC: A robust strategy for identifying eigenfunctions of dynamical operators. , 2020, The journal of physical chemistry. B.

[2]  Wei Chen,et al.  Nonlinear Discovery of Slow Molecular Modes using Hierarchical Dynamics Encoders , 2019, The Journal of chemical physics.

[3]  Erik H. Thiede,et al.  Galerkin approximation of dynamical quantities using trajectory data. , 2018, The Journal of chemical physics.

[4]  V. Pande,et al.  Markov State Models: From an Art to a Science. , 2018, Journal of the American Chemical Society.

[5]  Hao Wu,et al.  VAMPnets for deep learning of molecular kinetics , 2017, Nature Communications.

[6]  F. Noé,et al.  Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling , 2017, Nature Chemistry.

[7]  F. Noé,et al.  Collective variables for the study of long-time kinetics from molecular trajectories: theory and methods. , 2017, Current opinion in structural biology.

[8]  Hao Wu,et al.  Data-Driven Model Reduction and Transfer Operator Approximation , 2017, J. Nonlinear Sci..

[9]  Vassilios Theofilis,et al.  Modal Analysis of Fluid Flows: An Overview , 2017, 1702.01453.

[10]  Cecilia Clementi,et al.  Markov state models from short non-equilibrium simulations—Analysis and correction of estimation bias , 2017, 1701.01665.

[11]  Frank Noé,et al.  Variational Koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations. , 2016, The Journal of chemical physics.

[12]  F. Noé,et al.  Variational tensor approach for approximating the rare-event kinetics of macromolecular systems. , 2016, The Journal of chemical physics.

[13]  F. Noé,et al.  Investigating Molecular Kinetics by Variationally Optimized Diffusion Maps. , 2015, Journal of chemical theory and computation.

[14]  F. Noé,et al.  A Basis Set for Peptides for the Variational Approach to Conformational Kinetics. , 2015, Journal of chemical theory and computation.

[15]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[16]  Daniel Kressner,et al.  On a Perturbation Bound for Invariant Subspaces of Matrices , 2014, SIAM J. Matrix Anal. Appl..

[17]  Frank Noé,et al.  Markov state models of biomolecular conformational dynamics. , 2014, Current opinion in structural biology.

[18]  Frank Noé,et al.  Variational Approach to Molecular Kinetics. , 2014, Journal of chemical theory and computation.

[19]  Vijay S Pande,et al.  Improvements in Markov State Model Construction Reveal Many Non-Native Interactions in the Folding of NTL9. , 2013, Journal of chemical theory and computation.

[20]  Toni Giorgino,et al.  Identification of slow molecular order parameters for Markov model construction. , 2013, The Journal of chemical physics.

[21]  Frank Noé,et al.  A Variational Approach to Modeling Slow Processes in Stochastic Dynamical Systems , 2012, Multiscale Model. Simul..

[22]  B. Leimkuhler,et al.  Rational Construction of Stochastic Numerical Methods for Molecular Sampling , 2012, 1203.5428.

[23]  Christof Schütte,et al.  Estimating the Eigenvalue Error of Markov State Models , 2012, Multiscale Model. Simul..

[24]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[25]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[26]  Sotaro Fuchigami,et al.  Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions. , 2011, The Journal of chemical physics.

[27]  Frank Noé,et al.  On the Approximation Quality of Markov State Models , 2010, Multiscale Model. Simul..

[28]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[29]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[30]  Albert C. Pan,et al.  Building Markov state models along pathways to determine free energies and rates of transitions. , 2008, The Journal of chemical physics.

[31]  Gerhard Hummer,et al.  Peptide folding kinetics from replica exchange molecular dynamics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  G. Froyland,et al.  Detection of coherent oceanic structures via transfer operators. , 2007, Physical review letters.

[33]  François Perron,et al.  On the geometric ergodicity of Metropolis-Hastings algorithms , 2007 .

[34]  William Swope,et al.  Describing Protein Folding Kinetics by Molecular Dynamics Simulations. 1. Theory , 2004 .

[35]  William Swope,et al.  Describing Protein Folding Kinetics by Molecular Dynamics Simulations. 2. Example Applications to Alanine Dipeptide and a β-Hairpin Peptide† , 2004 .

[36]  P. Deuflhard,et al.  A Direct Approach to Conformational Dynamics Based on Hybrid Monte Carlo , 1999 .

[37]  A. Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[38]  R. Mathias Quadratic Residual Bounds for the Hermitian Eigenvalue Problem , 1998, SIAM J. Matrix Anal. Appl..

[39]  Hiroshi Takano,et al.  Molecular Dynamics Study of Relaxation Modes of a Single Polymer Chain , 1997 .

[40]  Andrew Knyazev,et al.  New estimates for Ritz vectors , 1997, Math. Comput..

[41]  Hiroshi Takano,et al.  Relaxation modes in random spin systems , 1995 .

[42]  Schuster,et al.  Separation of a mixture of independent signals using time delayed correlations. , 1994, Physical review letters.

[43]  Lang Tong,et al.  Indeterminacy and identifiability of blind identification , 1991 .

[44]  G. W. Stewart,et al.  Stochastic Perturbation Theory , 1990, SIAM Rev..

[45]  Charles R. Johnson,et al.  Matrix analysis , 1985 .

[46]  A. Knyazev Sharp a priori error estimates of the Rayleigh-Ritz method without assumptions of fixed sign or compactness , 1985 .

[47]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[48]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[49]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[50]  Chandler Davis The rotation of eigenvectors by a perturbation , 1963 .

[51]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[52]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[53]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[54]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[55]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[56]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[57]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[58]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[59]  S. Ulam A collection of mathematical problems , 1960 .