Finding Nemo’s Genes: A chromosome‐scale reference assembly of the genome of the orange clownfish Amphiprion percula

The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that anti-predator responses of reef fishes could distinguish predators based on their olfactory cues and that this ability is impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here we present a de novo chromosome-scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single-molecule real-time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi-C based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes.

[1]  Tomáš Sirovátka,et al.  Hybridisation and diversification , 2019 .

[2]  N. Salamin,et al.  First draft genome of an iconic clownfish species (Amphiprion frenatus) , 2018, Molecular ecology resources.

[3]  C. Austin,et al.  Finding Nemo: hybrid assembly with Oxford Nanopore and Illumina reads greatly improves the clownfish (Amphiprion ocellaris) genome assembly , 2018, GigaScience.

[4]  Ivan Liachko,et al.  Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly , 2017, The Journal of heredity.

[5]  P. Munday,et al.  Diel CO2 cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification , 2017, Scientific Reports.

[6]  N. Herbert,et al.  Clownfish in hypoxic anemones replenish host O2 at only localised scales , 2017, Scientific Reports.

[7]  Han Fang,et al.  GenomeScope: Fast reference-free genome profiling from short reads , 2016, bioRxiv.

[8]  S. Kelly,et al.  STRIDE: Species Tree Root Inference from Gene Duplication Events , 2017, bioRxiv.

[9]  M. Bode,et al.  Larval fish dispersal in a coral-reef seascape , 2017, Nature Ecology &Evolution.

[10]  Steven G. Schroeder,et al.  Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome , 2017, Nature Genetics.

[11]  S. Andréfouët,et al.  Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time , 2017, Current Biology.

[12]  D. Haak,et al.  Organelle_PBA, a pipeline for assembling chloroplast and mitochondrial genomes from PacBio DNA sequencing data , 2017, BMC Genomics.

[13]  G. Jones,et al.  First genealogy for a wild marine fish population reveals multigenerational philopatry , 2016, Proceedings of the National Academy of Sciences.

[14]  Jeffrey T Leek,et al.  Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown , 2016, Nature Protocols.

[15]  P. Buston,et al.  The four elements of within-group conflict in animal societies: an experimental test using the clown anemonefish, Amphiprion percula , 2016, Behavioral Ecology and Sociobiology.

[16]  M. Schatz,et al.  Phased diploid genome assembly with single-molecule real-time sequencing , 2016, Nature Methods.

[17]  A. Scott,et al.  Reef fishes can recognize bleached habitat during settlement: sea anemone bleaching alters anemonefish host selection , 2016, Proceedings of the Royal Society B: Biological Sciences.

[18]  Suzanna E Lewis,et al.  JBrowse: a dynamic web platform for genome visualization and analysis , 2016, Genome Biology.

[19]  Y. Tao,et al.  Complete mitochondrial genome of the orange clownfish Amphiprion percula (Pisces: Perciformes, Pomacentridae) , 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis.

[20]  Katharina J. Hoff,et al.  BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS , 2015, Bioinform..

[21]  P. Buston,et al.  Anemonefish personalities influence the strength of mutualistic interactions with host sea anemones , 2016 .

[22]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[23]  A. Tanomtong,et al.  The First Chromosomal Characteristics of Nucleolar Organizer Regions and Karyological Analysis of Pink Anemonefish, Amphiprion perideraion (Perciformes, Amphiprioninae) , 2015 .

[24]  S. Kelly,et al.  OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy , 2015, Genome Biology.

[25]  A. Wenger,et al.  Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: Impacts on gill structure and microbiome , 2015, Scientific Reports.

[26]  O. Kohany,et al.  Repbase Update, a database of repetitive elements in eukaryotic genomes , 2015, Mobile DNA.

[27]  Bin Kang,et al.  Mitochondrial DNA Genomes Organization and Phylogenetic Relationships Analysis of Eight Anemonefishes (Pomacentridae: Amphiprioninae) , 2015, PloS one.

[28]  J. Stillman,et al.  Genomics Are Transforming Our Understanding of Responses to Climate Change , 2015 .

[29]  Ivan Liachko Chromosome-Scale Scaffolding of de novo Genome Assemblies Using Hi-C , 2015 .

[30]  Floriane Plard,et al.  Comparative Analysis of Transposable Elements Highlights Mobilome Diversity and Evolution in Vertebrates , 2015, Genome biology and evolution.

[31]  M. Yandell,et al.  Genome Annotation and Curation Using MAKER and MAKER‐P , 2014, Current protocols in bioinformatics.

[32]  N. Salamin,et al.  Hybridisation and diversification in the adaptive radiation of clownfishes , 2014, BMC Evolutionary Biology.

[33]  N. Salamin,et al.  The radiation of the clownfishes has two geographical replicates , 2014 .

[34]  F. Kroon,et al.  Suspended sediment prolongs larval development in a coral reef fish , 2014, Journal of Experimental Biology.

[35]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[36]  Paul Medvedev,et al.  Informed and automated k-mer size selection for genome assembly , 2013, Bioinform..

[37]  P. Buston,et al.  Why some animals forgo reproduction in complex societies , 2014 .

[38]  Derrick E. Wood,et al.  Kraken: ultrafast metagenomic sequence classification using exact alignments , 2014, Genome Biology.

[39]  Andrew C. Adey,et al.  Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions , 2013, Nature Biotechnology.

[40]  D. Chivers,et al.  Coral reef fish incorporate multiple sources of visual and chemical information to mediate predation risk , 2013, Animal Behaviour.

[41]  A. Wenger,et al.  Climate change and the performance of larval coral reef fishes: the interaction between temperature and food availability , 2013, Conservation physiology.

[42]  M. Miya,et al.  MitoFish and MitoAnnotator: A Mitochondrial Genome Database of Fish with an Accurate and Automatic Annotation Pipeline , 2013, Molecular biology and evolution.

[43]  Aaron A. Klammer,et al.  Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data , 2013, Nature Methods.

[44]  Gordon Gremme,et al.  GenomeTools: A Comprehensive Software Library for Efficient Processing of Structured Genome Annotations , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[45]  Thaine W. Rowley,et al.  The Tree of Life and a New Classification of Bony Fishes , 2013, PLoS currents.

[46]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[47]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[48]  F. Al-Horani,et al.  Anemonefish oxygenate their anemone hosts at night , 2013, Journal of Experimental Biology.

[49]  Inanç Birol,et al.  Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species , 2013, GigaScience.

[50]  Robert D. Finn,et al.  Dfam: a database of repetitive DNA based on profile hidden Markov models , 2012, Nucleic Acids Res..

[51]  Experimental evaluation of imprinting and the role innate preference plays in habitat selection in a coral reef fish , 2013, Oecologia.

[52]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[53]  J. Schnoor Ocean acidification. , 2013, Environmental science & technology.

[54]  A. Tanomtong,et al.  First Report of Chromosome Analysis of Saddleback Anemonefish, Amphiprion polymnus (Perciformes, Amphiprioninae), in Thailand , 2012 .

[55]  R. Gibbs,et al.  Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology , 2012, PloS one.

[56]  Glenn Tesler,et al.  Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory , 2012, BMC Bioinformatics.

[57]  G. Jones,et al.  Persistence of self-recruitment and patterns of larval connectivity in a marine protected area network , 2012, Ecology and evolution.

[58]  G. Nilsson,et al.  Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function , 2012, Nature Climate Change.

[59]  THE RADIATION , 2012 .

[60]  D. Dixson Predation risk assessment by larval reef fishes during settlement-site selection , 2012, Coral Reefs.

[61]  S. Simpson,et al.  Ocean acidification erodes crucial auditory behaviour in a marine fish , 2011, Biology Letters.

[62]  Mark Yandell,et al.  MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects , 2011, BMC Bioinformatics.

[63]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[64]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[65]  S. Planes,et al.  Detrimental effects of host anemone bleaching on anemonefish populations , 2011, Coral Reefs.

[66]  Robert C. Edgar,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[67]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[68]  P. Munday,et al.  Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. , 2010, Ecology letters.

[69]  D. Mebs Chemical biology of the mutualistic relationships of sea anemones with fish and crustaceans. , 2009, Toxicon : official journal of the International Society on Toxinology.

[70]  S. Kurtz,et al.  Fine-grained annotation and classification of de novo predicted LTR retrotransposons , 2009, Nucleic acids research.

[71]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[72]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[73]  G. Jones,et al.  Larval dispersal connects fish populations in a network of marine protected areas , 2009, Proceedings of the National Academy of Sciences.

[74]  K. Døving,et al.  Ocean acidification impairs olfactory discrimination and homing ability of a marine fish , 2009, Proceedings of the National Academy of Sciences.

[75]  P. Munday,et al.  Coral reef fish smell leaves to find island homes , 2008, Proceedings of the Royal Society B: Biological Sciences.

[76]  M. Borodovsky,et al.  Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. , 2008, Genome research.

[77]  M. Robles,et al.  University of Birmingham High throughput functional annotation and data mining with the Blast2GO suite , 2022 .

[78]  Stefan Kurtz,et al.  LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.

[79]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[80]  R. Turingan,et al.  Spawning, early development and first feeding in the gobiid fish Priolepis nocturna , 2007 .

[81]  A. Wong,et al.  Are clownfish groups composed of close relatives? An analysis of microsatellite DNA variation in Amphiprion percula , 2007, Molecular ecology.

[82]  E. Frise,et al.  Sequence Finishing and Mapping of Drosophila melanogaster Heterochromatin , 2007, Science.

[83]  María B. García,et al.  An extraordinary life span estimate for the clown anemonefish Amphiprion percula , 2007 .

[84]  A. Takai,et al.  Karyotypes and banded chromosomal features in two anemonefishes (Pomacentridae, Perciformes) , 2007 .

[85]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[86]  Burkhard Morgenstern,et al.  AUGUSTUS: ab initio prediction of alternative transcripts , 2006, Nucleic Acids Res..

[87]  S. Holbrook,et al.  Growth, reproduction and survival of a tropical sea anemone (Actiniaria): benefits of hosting anemonefish , 2005, Coral Reefs.

[88]  P. M. Galetti,et al.  Karyotypic changes associated to the dispersive potential on Pomacentridae (Pisces, Perciformes) , 2004 .

[89]  P. Hebert,et al.  Genome-size evolution in fishes , 2004 .

[90]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[91]  P. Buston Mortality is associated with social rank in the clown anemonefish (Amphiprion percula) , 2003 .

[92]  J. Elliott,et al.  Coexistence of nine anemonefish species: differential host and habitat utilization, size and recruitment , 2001 .

[93]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[94]  Jerzy Jurka,et al.  Censor - a Program for Identification and Elimination of Repetitive Elements From DNA Sequences , 1996, Comput. Chem..

[95]  Y. Sorokin Coral Reef Fish , 1995 .

[96]  R. Hoffmann,et al.  The Four Elements , 1993 .

[97]  D. Fautin The anemonefish symbiosis: what is known and what is not , 1991 .

[98]  東京国立近代美術館 東京国立近代美術館研究紀要 = Bulletin of the National Museum of Modern Art, Tokyo , 1987 .

[99]  A. H. Rose Growth, Reproduction and Survival , 1968 .