The role of information in a two-traders market
暂无分享,去创建一个
[1] P. Lions,et al. Jeux à champ moyen. I – Le cas stationnaire , 2006 .
[2] I. Segal,et al. The Black-Scholes pricing formula in the quantum context. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[3] E. Madelung,et al. Quantentheorie in hydrodynamischer Form , 1927 .
[4] H. Fan,et al. A New Binomial–Negative-Binomial Combinatorial State in Quantum Optics Theory and Its Generation , 2012 .
[5] Marcel Reginatto,et al. Derivation of the equations of nonrelativistic quantum mechanics using the principle of minimum Fisher information , 1998 .
[6] Edward Nelson. Derivation of the Schrodinger equation from Newtonian mechanics , 1966 .
[7] A. Khrennikov,et al. Quantum Social Science , 2013 .
[8] Mark Tippett,et al. A wave function for Stock Market Returns , 2009 .
[9] Fabio Bagarello,et al. Quantum Dynamics for Classical Systems: With Applications of the Number Operator , 2012 .
[10] Sébastien Lepaul,et al. Indiscernability and Mean Field, a Base of Quantum Interaction , 2012, QI.
[11] F. Bagarello. Stock markets and quantum dynamics: A second quantized description , 2007, 0904.3210.
[12] B. Baaquie. Interest rates in quantum finance: the Wilson expansion and Hamiltonian. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] Fabio Bagarello,et al. An operatorial approach to stock markets , 2006, 0904.0896.
[14] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[15] Advanced Quantum Mechanics , 1969 .
[16] E. Haven. The Variation of Financial Arbitrage via the Use of an Information Wave Function , 2008 .
[17] B. Frieden,et al. Asymmetric information and macroeconomic dynamics , 2010 .
[18] P. Lions,et al. Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .
[19] E. W. Piotrowski,et al. Quantum diffusion of prices and profits , 2005 .
[20] Olga Al. Choustova. Quantum Bohmian model for financial market , 2001 .
[21] F. Bagarello. A quantum statistical approach to simplified stock markets , 2009, 0907.2531.
[22] Diederik Aerts,et al. A quantum-like approach to the stock market , 2011, 1110.5350.
[23] A. Khrennikov. Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena , 2004 .
[24] Jörg Baschnagel,et al. Stochastic Processes: From Physics to Finance , 2000 .
[25] L. Accardi,et al. THE QUANTUM BLACK-SCHOLES EQUATION , 2007, 0706.1300.
[26] D. Bohm. A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .
[27] F. Bagarello. Simplified stock markets described by number operators , 2009, 0904.3213.
[28] E. Haven. Itô’s Lemma with Quantum Calculus (q-Calculus): Some Implications , 2011 .