The role of information in a two-traders market

In a very simple stock market, made by only two initially equivalent traders, we discuss how the information can affect the performance of the traders. More in detail, we first consider how the portfolios of the traders evolve in time when the market is closed. After that, we discuss two models in which an interaction with the outer world is allowed. We show that, in this case, the two traders behave differently, depending on (i) the amount of information which they receive from outside; and (ii) the quality of this information.

[1]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[2]  I. Segal,et al.  The Black-Scholes pricing formula in the quantum context. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[4]  H. Fan,et al.  A New Binomial–Negative-Binomial Combinatorial State in Quantum Optics Theory and Its Generation , 2012 .

[5]  Marcel Reginatto,et al.  Derivation of the equations of nonrelativistic quantum mechanics using the principle of minimum Fisher information , 1998 .

[6]  Edward Nelson Derivation of the Schrodinger equation from Newtonian mechanics , 1966 .

[7]  A. Khrennikov,et al.  Quantum Social Science , 2013 .

[8]  Mark Tippett,et al.  A wave function for Stock Market Returns , 2009 .

[9]  Fabio Bagarello,et al.  Quantum Dynamics for Classical Systems: With Applications of the Number Operator , 2012 .

[10]  Sébastien Lepaul,et al.  Indiscernability and Mean Field, a Base of Quantum Interaction , 2012, QI.

[11]  F. Bagarello Stock markets and quantum dynamics: A second quantized description , 2007, 0904.3210.

[12]  B. Baaquie Interest rates in quantum finance: the Wilson expansion and Hamiltonian. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Fabio Bagarello,et al.  An operatorial approach to stock markets , 2006, 0904.0896.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Advanced Quantum Mechanics , 1969 .

[16]  E. Haven The Variation of Financial Arbitrage via the Use of an Information Wave Function , 2008 .

[17]  B. Frieden,et al.  Asymmetric information and macroeconomic dynamics , 2010 .

[18]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[19]  E. W. Piotrowski,et al.  Quantum diffusion of prices and profits , 2005 .

[20]  Olga Al. Choustova Quantum Bohmian model for financial market , 2001 .

[21]  F. Bagarello A quantum statistical approach to simplified stock markets , 2009, 0907.2531.

[22]  Diederik Aerts,et al.  A quantum-like approach to the stock market , 2011, 1110.5350.

[23]  A. Khrennikov Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena , 2004 .

[24]  Jörg Baschnagel,et al.  Stochastic Processes: From Physics to Finance , 2000 .

[25]  L. Accardi,et al.  THE QUANTUM BLACK-SCHOLES EQUATION , 2007, 0706.1300.

[26]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[27]  F. Bagarello Simplified stock markets described by number operators , 2009, 0904.3213.

[28]  E. Haven Itô’s Lemma with Quantum Calculus (q-Calculus): Some Implications , 2011 .