The ClosTron: Mutagenesis in Clostridium refined and streamlined.

[1]  K. Acharya,et al.  Cwp84, a Surface-associated Cysteine Protease, Plays a Role in the Maturation of the Surface Layer of Clostridium difficile* , 2009, The Journal of Biological Chemistry.

[2]  R. Lewis,et al.  Characterization of the Sporulation Initiation Pathway of Clostridium difficile and Its Role in Toxin Production , 2009, Journal of bacteriology.

[3]  J. Austin,et al.  Motility and Flagellar Glycosylation in Clostridium difficile , 2009, Journal of bacteriology.

[4]  N. Fairweather,et al.  A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein , 2009, Molecular microbiology.

[5]  G. Wormser,et al.  Clostridia: Molecular Biology in the Post-Genomic Era Edited by Holger Brüggemann and Gerhard Gottschalk Norfolk, United Kingdom: Caister Academic Press, 2009. 230 pp., Illustrated. $310.00 (hardcover) , 2009 .

[6]  Weihong Jiang,et al.  Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. , 2009, Metabolic engineering.

[7]  J. Heap,et al.  A modular system for Clostridium shuttle plasmids. , 2009, Journal of microbiological methods.

[8]  E. Papoutsakis Engineering solventogenic clostridia. , 2008, Current opinion in biotechnology.

[9]  A. Lambowitz,et al.  Group II Intron-Based Gene Targeting Reactions in Eukaryotes , 2008, PloS one.

[10]  B. Arulanandam,et al.  Targeted Inactivation of Francisella tularensis Genes by Group II Introns , 2008, Applied and Environmental Microbiology.

[11]  A. Sonenshein,et al.  Bile Salts and Glycine as Cogerminants for Clostridium difficile Spores , 2008, Journal of bacteriology.

[12]  J. Brazier Clostridium difficile: from obscurity to superbug , 2008, British journal of biomedical science.

[13]  Phalguni Gupta,et al.  Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model , 2007, Molecular microbiology.

[14]  Shiyuan Hu,et al.  Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum , 2007, Cell Research.

[15]  J. Heap,et al.  The ClosTron: a universal gene knock-out system for the genus Clostridium. , 2007, Journal of microbiological methods.

[16]  C. Schmidt,et al.  Antimicrobial phenotypes and molecular basis in clinical strains of Clostridium difficile. , 2007, Diagnostic microbiology and infectious disease.

[17]  Phalguni Gupta,et al.  Disruption of a toxin gene by introduction of a foreign gene into the chromosome of Clostridium perfringens using targetron-induced mutagenesis. , 2007, Plasmid.

[18]  A. Lambowitz,et al.  Gene Targeting in Gram-Negative Bacteria by Use of a Mobile Group II Intron (“Targetron”) Expressed from a Broad-Host-Range Vector , 2007, Applied and Environmental Microbiology.

[19]  I. Plante,et al.  Restriction for gene insertion within the Lactococcus lactis Ll.LtrB group II intron. , 2006, RNA.

[20]  Phalguni Gupta,et al.  Construction of an Alpha Toxin Gene Knockout Mutant of Clostridium perfringens Type A by Use of a Mobile Group II Intron , 2005, Applied and Environmental Microbiology.

[21]  L. Lynd,et al.  Consolidated bioprocessing of cellulosic biomass: an update. , 2005, Current opinion in biotechnology.

[22]  A. Lambowitz,et al.  Mobile group II introns. , 2004, Annual review of genetics.

[23]  A. Lambowitz,et al.  Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. , 2004, Journal of molecular biology.

[24]  A. Lambowitz,et al.  Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. , 2003, Nucleic acids research.

[25]  Eleftherios T. Papoutsakis,et al.  Northern, Morphological, and Fermentation Analysis of spo0A Inactivation and Overexpression in Clostridium acetobutylicum ATCC 824 , 2002, Journal of bacteriology.

[26]  A. Lambowitz,et al.  Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria , 2001, Nature Biotechnology.

[27]  B. Sullenger,et al.  Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. , 2000, Science.

[28]  M. Belfort,et al.  Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. , 2000, Genes & development.

[29]  S. Ho,et al.  Site-directed mutagenesis by overlap extension using the polymerase chain reaction. , 1989, Gene.

[30]  S. Gatenbeck,et al.  Intermediary Metabolism in Clostridium acetobutylicum: Levels of Enzymes Involved in the Formation of Acetate and Butyrate , 1984, Applied and environmental microbiology.

[31]  R. O'brien,et al.  Oxygen and the growth and metabolism of Clostridium acetobutylicum. , 1971, Journal of general microbiology.

[32]  W. Wackernagel,et al.  Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. , 1995, Gene.