Reactive spark plasma sintering and mechanical properties of ZrB 2 -SiC-ZrC composites from ZrC-B 4 C-Si system

[1]  J. Zou,et al.  Tungsten carbide: A versatile additive to get trace alkaline-earth oxide impurities out of ZrB2 based ceramics , 2018 .

[2]  G. Hilmas,et al.  Mechanical Properties and Grain Orientation Evolution of Zirconium Diboride-Zirconium Carbide Ceramics , 2018 .

[3]  Jingjing Xie,et al.  Low temperature consolidation for fine-grained zirconium carbide from nanoparticles with ZrH2 as sintering additive , 2017 .

[4]  J. Zou,et al.  Thermoablative resistance of ZrB 2 -SiC-WC ceramics at 2400 °C , 2017 .

[5]  G. Hilmas,et al.  Ultra-high temperature ceramics: Materials for extreme environments , 2017 .

[6]  Guo‐Jun Zhang,et al.  Reactive hot-pressing of ZrB2-ZrC-SiC ceramics via direct addition of SiC , 2016 .

[7]  Z. Fu,et al.  Microstructural refinement in spark plasma sintering 3Y-TZP nanoceramics , 2016 .

[8]  Nitin P. Padture,et al.  Advanced structural ceramics in aerospace propulsion. , 2016, Nature materials.

[9]  Yucheng Wang,et al.  Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism , 2015, Scientific Reports.

[10]  J. Vleugels,et al.  A top-down approach to densify ZrB2–SiC–BN composites with deeper homogeneity and improved reliability , 2014 .

[11]  J. Vleugels,et al.  High temperature strength of hot pressed ZrB2–20 vol% SiC ceramics based on ZrB2 starting powders prepared by different carbo/boro-thermal reduction routes , 2013 .

[12]  K. Vanmeensel,et al.  Spark Plasma Sintering of Superhard B4C–ZrB2 Ceramics by Carbide Boronizing , 2013 .

[13]  S. Guo,et al.  Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .

[14]  Han Jiecai,et al.  Reactive hot pressing and sintering characterization of ZrB2–SiC–ZrC composites , 2008 .

[15]  M. Nygren,et al.  Spark plasma sintering of ultra refractory compounds , 2008 .

[16]  K. Vanmeensel,et al.  Synthesis and microstructural features of ZrB2–SiC-based composites by reactive spark plasma sintering and reactive hot pressing , 2007 .

[17]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[18]  G. Hilmas,et al.  Fabrication and properties of reactively hot pressed ZrB2–SiC ceramics , 2007 .

[19]  R. Savino,et al.  Stability of ultra-high-temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions , 2007 .

[20]  G. Hilmas,et al.  Low-Temperature Densification of Zirconium Diboride Ceramics by Reactive Hot Pressing , 2006 .

[21]  Guo‐Jun Zhang,et al.  Reactive hot pressing of ZrB2-SiC-ZrC ultra high-temperature ceramics at 1800°C , 2006 .

[22]  Y. Feng,et al.  Raman spectroscopic investigation of carbon nanowalls. , 2006, The Journal of chemical physics.

[23]  Alida Bellosi,et al.  Microstructure and Properties of an HfB2‐SiC Composite for Ultra High Temperature Applications , 2004 .

[24]  †. J.J.Meléndez-Martínez,et al.  Characterisation and high temperature mechanical properties of zirconium boride-based materials , 2002 .

[25]  Guo‐Jun Zhang,et al.  Reactive Hot Pressing of ZrB2–SiC Composites , 2004 .

[26]  Mark M. Opeka,et al.  Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and zirconium Compounds , 1999 .

[27]  R. Nemanich,et al.  First- and second-order Raman scattering from finite-size crystals of graphite , 1979 .