InP-DHBT-on-BiCMOS Technology With $f_{T}/f_{\max}$ of 400/350 GHz for Heterogeneous Integrated Millimeter-Wave Sources

This paper presents a novel InP-SiGe BiCMOS technology using wafer-scale heterogeneous integration. The vertical stacking of the InP double heterojunction bipolar transistor (DHBT) circuitry directly on top of the BiCMOS wafer enables ultra-broadband interconnects with <; 0.2 dB insertion loss from 0-100 GHz. The 0.8 × 5 μm2 InP DHBTs show fT/fmax of 400/350 GHz with an output power of more than 26 mW at 96 GHz. These are record values for a heterogeneously integrated transistor on silicon. As a circuit example, a 164-GHz signal source is presented. It features a voltage-controlled oscillator in BiCMOS, which drives a doubler-amplifier chain in InP DHBT technology.

[1]  V. Krozer,et al.  Large-Signal Modeling of High-Speed InP DHBTs using Electromagnetic Simulation Based De-embedding , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[2]  T. Weiland,et al.  A practical guide to 3-D simulation , 2008, IEEE Microwave Magazine.

[3]  Tsu-Hsi Chang,et al.  The DARPA Diverse Accessible Heterogeneous Integration (DAHI) program: Convergence of compound semiconductor devices and silicon-enabled architectures , 2012, 2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[4]  C. Wipf,et al.  SiGe HBT technology with fT/fmax of 300GHz/500GHz and 2.0 ps CML gate delay , 2010, 2010 International Electron Devices Meeting.

[5]  K. Schulz,et al.  Alignment technology for backside integration , 2011, European Mask and Lithography Conference.

[6]  W. E. Hoke,et al.  Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit , 2012 .

[7]  M. Rudolph,et al.  InP DHBT Process in Transferred-Substrate Technology With $f_{t}$ and $f_{\max}$ Over 400 GHz , 2009, IEEE Transactions on Electron Devices.

[8]  D. Knoll,et al.  High-performance BiCMOS technologies without epitaxially-buried subcollectors and deep trenches , 2006, 2006 International SiGe Technology and Device Meeting.

[9]  M. Urteaga,et al.  A 220 GHz InP HBT Solid-State Power Amplifier MMIC with 90mW POUT at 8.2dB Compressed Gain , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[10]  C. Meliani,et al.  Traveling-Wave Amplifiers in Transferred Substrate InP-HBT Technology , 2009, IEEE Transactions on Microwave Theory and Techniques.

[11]  Jian-Qiang Lu,et al.  Effects of Bonding Process Parameters on Wafer-to-Wafer Alignment Accuracy in Benzocyclobutene (BCB) Dielectric Wafer Bonding , 2005 .

[12]  J. Rizk,et al.  A 32nm low power RF CMOS SOC technology featuring high-k/metal gate , 2010, 2010 Symposium on VLSI Technology.

[13]  M. Sokolich,et al.  Dense heterogeneous integration for InP Bi-CMOS technology , 2009, 2009 IEEE International Conference on Indium Phosphide & Related Materials.

[14]  B. Senapati,et al.  Advanced technique for broadband on-wafer rf device characterization , 2004, ARFTG 63rd Conference, Spring 2004.

[15]  A. Konczykowska,et al.  Improved External Base Resistance Extraction for Submicrometer InP/InGaAs DHBT Models , 2011, IEEE Transactions on Electron Devices.

[16]  T. E. Kazior,et al.  Monolithic integration of InP-based transistors on Si substrates using MBE , 2009 .

[17]  Christoph Scheytt,et al.  A Single-Ended Fully Integrated SiGe 77/79 GHz Receiver for Automotive Radar , 2008, IEEE Journal of Solid-State Circuits.

[18]  Laurent Fulbert,et al.  Photonics — Electronics integration on CMOS , 2011, 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[19]  R. Doerner,et al.  Verification of the wafer-level LRM+ calibration technique for GaAs applications up to 110 GHz , 2005, 65th ARFTG Conference Digest, 2005. Spring 2005.

[20]  Vesna Radisic,et al.  A 75 mW 210 GHz Power Amplifier Module , 2011, 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[21]  Joe Zhou,et al.  Advanced Heterogeneous Integration of InP HBT and CMOS Si Technologies , 2010, 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).