How computers can help us in creating an intuitive access to relativity

Computers have added many new possibilities to the tool box used for visualizing science in general and relativity in particular. We present some new results from our own work: (2+1) dimensional Minkowski diagrams showing two spatial dimensions, extended wormhole visualization, and the illustration of accretion discs by using the approximation via a rigidly rotating disc of dust. We also discuss some related examples from our earlier work, such as interactive and immersive visualization, or the visualization of the warp drive metric.

[1]  D. Weiskopf,et al.  Visualization of the General Relativistic Rigidly Ro- tating Disk of Dust , 1999 .

[2]  H. Minkowski,et al.  Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern , 1910 .

[3]  Werner Benger,et al.  Visions of Numerical Relativity , 2000 .

[4]  L. Schiller Über die spezielle und die allgemeine Relativitätstheorie. (Gemeinverständlich.) Von A. Einstein. 13. Aufl. 1921. (Sammlung Vieweg, Heft 38) , 1922 .

[5]  K. Thorne,et al.  Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity , 1988 .

[6]  Neugebauer,et al.  General relativistic gravitational field of a rigidly rotating disk of dust: solution in terms of ultraelliptic functions. , 1995, Physical review letters.

[7]  Fast lichtschnell durch die Stadt: Visualisierung relativistischer Effekte , 2005 .

[8]  B. Carter,et al.  COVARIANT ANALYSIS OF NEWTONIAN MULTI-FLUID MODELS FOR NEUTRON STARS: , 2003, astro-ph/0305186.

[9]  L. McCalman,et al.  Real Time Relativity: Exploratory learning of special relativity , 2007 .

[10]  Miguel Alcubierre,et al.  LETTER TO THE EDITOR: The warp drive: hyper-fast travel within general relativity , 1994, gr-qc/0009013.

[11]  Thomas Ertl,et al.  Automatic Generation and Non-Photorealistic Rendering of 2+1D Minkowski Diagrams , 2002, WSCG.

[12]  Edward Teo Rotating traversable wormholes , 1998, gr-qc/9803098.

[13]  Albert Einstein Relativity: The Special and the General Theory A Popular Exposition , 1920, Nature.

[14]  Thomas Müller,et al.  Visual appearance of a Morris-Thorne-wormhole , 2004 .

[15]  Thomas Ertl,et al.  Explanatory and illustrative visualization of special and general relativity , 2006, IEEE Transactions on Visualization and Computer Graphics.