On Some Alternative Characterizations of Riordan Arrays

We give several new characterizations of Riordan Arrays, the most important of which is: if {dn,k } n,k∈N is a lower triangular arraywhose generic element dn,k linearly depends on the elements in a well-defined though large area of the array, then {dn,k } n,k∈N is Riordan. We also provide some applications of these characterizations to the lattice path theory.

[1]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[2]  Thomas Sundquist,et al.  Lattice path enumeration by formal schema , 1992 .

[3]  Marilena Barnabei,et al.  Recursive matrices and umbral calculus , 1982 .

[4]  D. P. Roselle,et al.  On Weighted Lattice Paths , 1973, J. Comb. Theory, Ser. A.

[5]  T. Narayana,et al.  Lattice Paths with Diagonal Steps , 1969, Canadian Mathematical Bulletin.

[6]  S. G. Mohanty,et al.  On Lattice Paths with Several Diagonal Steps , 1968, Canadian Mathematical Bulletin.

[7]  Yeong-Nan Yeh,et al.  Dyck paths of knight moves , 1989, Discret. Appl. Math..

[8]  Jacques Labelle On pairs of non-crossing generalized Dyck paths☆ , 1993 .

[9]  Renzo Sprugnoli,et al.  Algebraic and Combinatorial Properties of Simple, Coloured Walks , 1994, CAAP.

[10]  Ira M. Gessel,et al.  A Factorization for Formal Laurent Series and Lattice Path Enumeration , 1980, J. Comb. Theory A.

[11]  D. G. Rogers,et al.  Deques, trees and lattice paths , 1981 .

[12]  Renzo Sprugnoli,et al.  Riordan arrays and combinatorial sums , 1994, Discret. Math..

[13]  S. G. Mohanty,et al.  Higher dimensional lattice paths with diagonal steps , 1976, Discret. Math..

[14]  Yeong-Nan Yeh,et al.  Generalized Dyck paths , 1990, Discret. Math..

[15]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[16]  D. Roselle,et al.  Weighted lattice paths. , 1971 .