The Miniaturization of an Optical Absorption Spectrometer for Smart Sensing of Natural Gas

Natural gas is the primary energy resource in both households and industry. Due to the molecular similarity of the main constituents, i.e., hydrocarbons, composition analysis of natural gas requires a highly selective and sensitive measurement technique. Smart sensing of natural gas in a large energy grid favors the use of methods that provide low unit cost in high-volume production, such as on-chip devices that can be micromachined at the wafer level, while maintaining the performance of complex benchtop instruments. Optical absorption spectroscopy with wideband optical filters offers a comparable performance in a smaller footprint. However, the gas cell, where the absorption takes place, challenges the miniaturization of the spectrometer. This paper presents two approaches with analysis and experimental validation to integrate the gas cell and the linear variable optical filter (LVOF) at the wafer level. The first approach uses 45$^{\circ}$ inclined mirrors to steer the light beam through the sample gas, while the second approach, the gas-filled LVOF, functionally integrates the gas cell into the resonator cavity of the filter. Both devices are self-referenced and compatible with fabrication in a CMOS process, and therefore highly suitable for smart gas sensing.

[1]  Hans-Peter Loock,et al.  Cavity-enhanced spectroscopy and sensing , 2014 .

[2]  T. Seiyama,et al.  A New Detector for Gaseous Components Using Semiconductive Thin Films. , 1962 .

[3]  T. A. Jones,et al.  The principles of the detection of flammable atmospheres by catalytic devices , 1973 .

[4]  H. Siesler,et al.  Near-infrared spectroscopy:principles,instruments,applications , 2002 .

[5]  A. Zakrzewski,et al.  Characterization of 45° Micromirrors Fabricated by Silicon Anisotropic Etching in Solutions Containing Different Organic Additives☆ , 2012 .

[6]  S. Grabarnik,et al.  Vertically tapered layers for optical applications fabricated using resist reflow , 2009 .

[7]  G. de Graaf,et al.  Micro thermal conductivity detector with flow compensation using a dual MEMS device , 2016 .

[8]  Haitao Yu,et al.  Micro-/Nanocombined Gas Sensors With Functionalized Mesoporous Thin Film Self-Assembled in Batches Onto Resonant Cantilevers , 2012, IEEE Transactions on Industrial Electronics.

[9]  Jiri Janata,et al.  Principles of Chemical Sensors , 1989 .

[10]  Julien Mandon,et al.  Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications , 2013, Journal of biomedical optics.

[11]  Christoph Hagleitner,et al.  CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors , 2002, IEEE J. Solid State Circuits.

[12]  D. F. Swinehart,et al.  The Beer-Lambert Law , 1962 .

[13]  M. Mozek,et al.  The role of Triton surfactant in anisotropic etching of {1 1 0} reflective planes on (1 0 0) silicon , 2005 .

[14]  Reinoud F. Wolffenbuttel,et al.  Optical design and characterization of a gas filled MEMS Fabry-Perot filter , 2015, Microtechnologies for the New Millennium.

[15]  F. Bǎnicǎ,et al.  Chemical sensors and biosensors : fundamentals and applications , 2012 .

[16]  Nikolai V. Tkachenko,et al.  Optical Spectroscopy: Methods and Instrumentations , 2006 .

[17]  Pasqualina M. Sarro,et al.  Liquid and gas micro-calorimeters for (bio)chemical measurements , 1994 .

[18]  W. Engewald,et al.  Practical Gas Chromatography: A Comprehensive Reference , 2014 .

[19]  Sangmin Jeon,et al.  Adsorption and desorption characteristics of alcohol vapors on a nanoporous ZIF-8 film investigated using silicon microcantilevers. , 2015, Chemical communications.

[20]  N. Janković,et al.  Silicon sensors and circuits: On-chip compatibility , 1998 .

[21]  Peter Enoksson,et al.  Design, fabrication and characterization of infrared LVOFs for measuring gas composition , 2014 .

[22]  R. Tatam,et al.  Optical gas sensing: a review , 2012 .

[23]  Russell Binions,et al.  Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring , 2010, Sensors.

[24]  Richard J. Ewen,et al.  Sulfur poisoning, recovery and related phenomena over supported palladium, rhodium and iridium catalysts for methane oxidation , 1993 .

[25]  Gordon W. F. Drake,et al.  Springer Handbook of Atomic, Molecular, and Optical Physics , 2023, Springer Handbooks.

[26]  Daqiang Zhang,et al.  A Survey on Gas Sensing Technology , 2012, Sensors.

[27]  Claude Lucat,et al.  Dynamic thermal conductivity sensor for gas detection , 2004 .

[28]  P. Bartlett,et al.  A micromachined calorimetric gas sensor: an application of electrodeposited nanostructured palladium for the detection of combustible gases. , 2003, Analytical chemistry.

[29]  Daniele Romanini,et al.  Optical–feedback cavity–enhanced absorption: a compact spectrometer for real–time measurement of atmospheric methane , 2006 .

[30]  Alan G. R. Evans,et al.  Photoresist parabolas for curved micromirrors , 1998 .

[31]  Reinhard Voelkel,et al.  High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques , 2012, Optical Systems Design.

[32]  C. Strandman,et al.  Fabrication of 45/spl deg/ mirrors together with well-defined v-grooves using wet anisotropic etching of silicon , 1995 .

[33]  Kwan Kyu Park,et al.  A Multichannel Oscillator for a Resonant Chemical Sensor System , 2014, IEEE Transactions on Industrial Electronics.

[34]  John Leis,et al.  A Temperature Compensation Technique for Near-Infrared Methane Gas Threshold Detection , 2016, IEEE Transactions on Industrial Electronics.

[35]  Jorge Cabral,et al.  Smart-Optical Detector CMOS Array for Biochemical Parameters Analysis in Physiological Fluids , 2008, IEEE Transactions on Industrial Electronics.

[36]  Robert R McLeod,et al.  Improving the spectral resolution of wedged etalons and linear variable filters with incidence angle. , 2005, Optics letters.

[37]  Peter Enoksson,et al.  A miniaturized optical gas-composition sensor with integrated sample chamber , 2016 .

[38]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[39]  D. T. LEWIS,et al.  Analytical Instrumentation , 1961, Nature.

[40]  Reinoud F. Wolffenbuttel,et al.  Design and fabrication of 45° inclined mirrors for wafer-level optical absorption spectroscopy , 2016 .

[41]  T. Johnson,et al.  Gas-Phase Databases for Quantitative Infrared Spectroscopy , 2004, Applied spectroscopy.

[42]  Ger de Graaf,et al.  Compact gas cell integrated with a linear variable optical filter. , 2016, Optics express.