Towards Ordinal Data Science

Order is one of the main instruments to measure the relationship between objects in (empirical) data. However, compared to methods that use numerical properties of objects, the amount of ordinal methods developed is rather small. One reason for this is the limited availability of computational resources in the last century that would have been required for ordinal computations. Another reason -- particularly important for this line of research -- is that order-based methods are often seen as too mathematically rigorous for applying them to real-world data. In this paper, we will therefore discuss different means for measuring and 'calculating' with ordinal structures -- a specific class of directed graphs -- and show how to infer knowledge from them. Our aim is to establish Ordinal Data Science as a fundamentally new research agenda. Besides cross-fertilization with other cornerstone machine learning and knowledge representation methods, a broad range of disciplines will benefit from this endeavor, including, psychology, sociology, economics, web science, knowledge engineering, scientometrics.

[1]  Gerd Stumme,et al.  Maximal Ordinal Two-Factorizations , 2023, ICCS.

[2]  Gerd Stumme,et al.  Greedy Discovery of Ordinal Factors , 2023, arXiv.org.

[3]  Gerd Stumme,et al.  Factorizing Lattices by Interval Relations , 2022, Int. J. Approx. Reason..

[4]  Friedrich Martin Schneider,et al.  Intrinsic Dimension for Large-Scale Geometric Learning , 2022, Trans. Mach. Learn. Res..

[5]  Gerd Stumme,et al.  The Mont Blanc of Twitter: Identifying Hierarchies of Outstanding Peaks in Social Networks , 2021, ArXiv.

[6]  G. Ritter,et al.  Lattice Theory , 2021, Introduction to Lattice Algebra.

[7]  Aakanksha Sharaff,et al.  Data Science and Its Applications , 2021 .

[8]  Gerd Stumme,et al.  Attribute Selection using Contranominal Scales , 2021, ICCS.

[9]  Tom Hanika,et al.  Quantifying the Conceptual Error in Dimensionality Reduction , 2021, ICCS.

[10]  Marc Cavazza,et al.  Generalization Error Bound for Hyperbolic Ordinal Embedding , 2021, ICML.

[11]  Gerd Stumme,et al.  Force-Directed Layout of Order Diagrams using Dimensional Reduction , 2021, ICFCA.

[12]  T. Picker CHARLES , 2021 .

[13]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[14]  T. Oberlin,et al.  Ordinal Non-negative Matrix Factorization for Recommendation , 2020, ICML.

[15]  Yiqun Zhang,et al.  An Ordinal Data Clustering Algorithm with Automated Distance Learning , 2020, AAAI.

[16]  Ser-Nam Lim,et al.  A Metric Learning Reality Check , 2020, ECCV.

[17]  Gerd Stumme,et al.  Null Models for Formal Contexts , 2020, Inf..

[18]  Tom Hanika,et al.  Knowledge cores in large formal contexts , 2020, Annals of Mathematics and Artificial Intelligence.

[19]  Peter W. Eklund,et al.  Conjunctive query pattern structures: A relational database model for Formal Concept Analysis , 2020, Discret. Appl. Math..

[20]  E. Petrov,et al.  Ordinal spaces , 2020, Acta Mathematica Hungarica.

[21]  M. Thomas Mathematization, Not Measurement: A Critique of Stevens’ Scales of Measurement , 2019, Journal of Methods and Measurement in the Social Sciences.

[22]  Tom Hanika,et al.  FCA2VEC: Embedding Techniques for Formal Concept Analysis , 2019, Complex Data Analytics with Formal Concept Analysis.

[23]  Gerd Stumme,et al.  Orometric Methods in Bounded Metric Data , 2019, IDA.

[24]  Gerd Stumme,et al.  Drawing Order Diagrams Through Two-Dimension Extension , 2019, ArXiv.

[25]  Johannes Fürnkranz,et al.  Deep Ordinal Reinforcement Learning , 2019, ECML/PKDD.

[26]  Sanjoy Dasgupta,et al.  What relations are reliably embeddable in Euclidean space? , 2019, ALT.

[27]  Gerd Stumme,et al.  DimDraw - A Novel Tool for Drawing Concept Lattices , 2019, ICFCA.

[28]  Gerd Stumme,et al.  Relevant Attributes in Formal Contexts , 2018, ICCS.

[29]  Ulrike von Luxburg,et al.  Measures of distortion for machine learning , 2018, NeurIPS.

[30]  Gerd Stumme,et al.  Prominence and Dominance in Networks , 2018, EKAW.

[31]  Malgorzata Sulkowska,et al.  Uniform random posets , 2018, Inf. Sci..

[32]  Tom Hanika,et al.  Formal Context Generation using Dirichlet Distributions , 2018, ICCS.

[33]  G. Trendler Conjoint measurement undone , 2018, Theory & Psychology.

[34]  Tom Hanika,et al.  Probably approximately correct learning of Horn envelopes from queries , 2018, Discret. Appl. Math..

[35]  Gerd Stumme,et al.  Clones in Graphs , 2018, ISMIS.

[36]  Gerd Stumme,et al.  Intrinsic dimension of geometric data sets , 2018, Tohoku Mathematical Journal.

[37]  Francesco Kriegel,et al.  NextClosures: parallel computation of the canonical base with background knowledge , 2017, Int. J. Gen. Syst..

[38]  Bogdan Chornomaz,et al.  Why concept lattices are large: extremal theory for generators, concepts, and VC-dimension , 2017, Int. J. Gen. Syst..

[39]  Simon Andrews,et al.  Making Use of Empty Intersections to Improve the Performance of CbO-Type Algorithms , 2017, ICFCA.

[40]  William T. Trotter,et al.  Boolean dimension and local dimension , 2017, Electron. Notes Discret. Math..

[41]  Tat-Seng Chua,et al.  Neural Collaborative Filtering , 2017, WWW.

[42]  Tom Hanika,et al.  On the Usability of Probably Approximately Correct Implication Bases , 2017, ICFCA.

[43]  Alexey A. Tuzhilin,et al.  Who Invented the Gromov-Hausdorff Distance? , 2016, 1612.00728.

[44]  S. Merler,et al.  School closure policies at municipality level for mitigating influenza spread: a model-based evaluation , 2016, BMC Infectious Diseases.

[45]  Nancy Cartwright,et al.  A theory of measurement. , 2016 .

[46]  Bernhard Ganter,et al.  Conceptual Exploration , 2016, Springer Berlin Heidelberg.

[47]  Wenzhe Li,et al.  Metric Learning for Ordinal Data , 2016, AAAI.

[48]  M. Eronen,et al.  Heating up the measurement debate: What psychologists can learn from the history of physics , 2016 .

[49]  C. Spearman The proof and measurement of association between two things. , 2015, International journal of epidemiology.

[50]  Ulrike von Luxburg,et al.  Dimensionality estimation without distances , 2015, AISTATS.

[51]  A. Latif,et al.  On common α-fuzzy fixed points with applications , 2014 .

[52]  Matthias Keller,et al.  Intrinsic Metrics on Graphs: A Survey , 2014, 1407.7453.

[53]  Fei Wang,et al.  Survey on distance metric learning and dimensionality reduction in data mining , 2014, Data Mining and Knowledge Discovery.

[54]  Ulrike von Luxburg,et al.  Uniqueness of Ordinal Embedding , 2014, COLT.

[55]  Rajeev Kumar,et al.  Social Popularity based SVD++ Recommender System , 2014 .

[56]  Hiroshi Maehara,et al.  Euclidean embeddings of finite metric spaces , 2013, Discret. Math..

[57]  Jonas Poelmans,et al.  Formal Concept Analysis in knowledge processing: A survey on models and techniques , 2013, Expert Syst. Appl..

[58]  Feiping Nie,et al.  Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Multi-View K-Means Clustering on Big Data , 2022 .

[59]  Cynthia Vera Glodeanu,et al.  Tri-ordinal Factor Analysis , 2013, ICFCA.

[60]  Bernhard Ganter,et al.  Applications of Ordinal Factor Analysis , 2013, ICFCA.

[61]  Facundo Mémoli,et al.  Some Properties of Gromov–Hausdorff Distances , 2012, Discret. Comput. Geom..

[62]  David W. Aha,et al.  Transforming Graph Data for Statistical Relational Learning , 2012, J. Artif. Intell. Res..

[63]  Ernesto Estrada The communicability distance in graphs , 2012 .

[64]  Gerd Stumme,et al.  Publication Analysis of the Formal Concept Analysis Community , 2012, ICFCA.

[65]  B. Leclerc,et al.  Finite Ordered Sets: Concepts, Results and Uses , 2012 .

[66]  Facundo Mémoli,et al.  Metric Structures on Datasets: Stability and Classification of Algorithms , 2011, CAIP.

[67]  Stefan E. Schmidt,et al.  Valuations and closure operators on finite lattices , 2011, Discret. Appl. Math..

[68]  Vilém Vychodil,et al.  Parallel algorithm for computing fixpoints of Galois connections , 2010, Annals of Mathematics and Artificial Intelligence.

[69]  Peter W. Eklund,et al.  A Survey of Hybrid Representations of Concept Lattices in Conceptual Knowledge Processing , 2010, ICFCA.

[70]  Vilém Vychodil,et al.  Discovery of optimal factors in binary data via a novel method of matrix decomposition , 2010, J. Comput. Syst. Sci..

[71]  G. Trendler Measurement Theory, Psychology and the Revolution That Cannot Happen , 2009 .

[72]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[73]  Rudolf Wille,et al.  Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts , 2009, ICFCA.

[74]  D. Borsboom,et al.  A reanalysis of Lord's statistical treatment of football numbers , 2009 .

[75]  Eyke Hüllermeier,et al.  Label ranking by learning pairwise preferences , 2008, Artif. Intell..

[76]  Amedeo Napoli,et al.  Formal Concept Analysis: A Unified Framework for Building and Refining Ontologies , 2008, EKAW.

[77]  Chabane Djeraba,et al.  Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics , 2008, Advanced Information and Knowledge Processing.

[78]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[79]  Ravi P. Agarwal,et al.  Generalized contractions in partially ordered metric spaces , 2008 .

[80]  Kamal Jain,et al.  The Hardness of Approximating Poset Dimension , 2007, Electron. Notes Discret. Math..

[81]  Y. Deville,et al.  Analysis of the emission of very small dust particles from Spitzer spectro-imagery data using blind signal separation methods , 2007, astro-ph/0703072.

[82]  G. Boole An Investigation of the Laws of Thought: On which are founded the mathematical theories of logic and probabilities , 2007 .

[83]  Bernhard Ganter,et al.  Completing Description Logic Knowledge Bases Using Formal Concept Analysis , 2007, IJCAI.

[84]  V. Lakshmikantham,et al.  Fixed point theorems in partially ordered metric spaces and applications , 2006 .

[85]  Paul Bourgine,et al.  Lattice-based dynamic and overlapping taxonomies: The case of epistemic communities , 2006, Scientometrics.

[86]  Ittai Abraham,et al.  Advances in metric embedding theory , 2006, STOC '06.

[87]  Inderjit S. Dhillon,et al.  Generalized Nonnegative Matrix Approximations with Bregman Divergences , 2005, NIPS.

[88]  C.J.H. Mann,et al.  Probabilistic Conditional Independence Structures , 2005 .

[89]  Jaime S. Cardoso,et al.  Modelling ordinal relations with SVMs: An application to objective aesthetic evaluation of breast cancer conservative treatment , 2005, Neural Networks.

[90]  Rudolf Wille,et al.  Functorial scaling of ordinal data , 2005, Discret. Appl. Math..

[91]  Gerd Stumme,et al.  A Finite State Model for On-Line Analytical Processing in Triadic Contexts , 2005, ICFCA.

[92]  Claudio Carpineto,et al.  Concept data analysis - theory and applications , 2004 .

[93]  Ralph Freese,et al.  Automated Lattice Drawing , 2004, ICFCA.

[94]  Andreas Hotho,et al.  Conceptual Knowledge Processing with Formal Concept Analysis and Ontologies , 2004, ICFCA.

[95]  C.J.H. Mann,et al.  Fuzzy Relational Systems: Foundations and Principles , 2003 .

[96]  Steffen Staab,et al.  Explaining Text Clustering Results Using Semantic Structures , 2003, PKDD.

[97]  Gerd Stumme,et al.  Off to new shores: conceptual knowledge discovery and processing , 2003, Int. J. Hum. Comput. Stud..

[98]  Gerd Stumme,et al.  Creation and Merging of Ontology Top-Levels , 2003, ICCS.

[99]  Gerd Stumme,et al.  Conceptual knowledge discovery--a human-centered approach , 2003, Appl. Artif. Intell..

[100]  Gerd Stumme,et al.  FCA-MERGE: Bottom-Up Merging of Ontologies , 2001, IJCAI.

[101]  Gerd Stumme,et al.  Reverse Pivoting in Conceptual Information Systems , 2001, ICCS.

[102]  Peter Eades,et al.  Drawing series parallel digraphs symmetrically , 2000, Comput. Geom..

[103]  Wille Linear Measurement Models-Axiomatizations and Axiomatizability. , 2000, Journal of mathematical psychology.

[104]  Gerd Stumme,et al.  Conceptual Information Systems Discussed through in IT-Security Tool , 2000, EKAW.

[105]  Gerd Stumme,et al.  A Contextual-Logic Extension of TOSCANA , 2000, ICCS.

[106]  Frank Tip,et al.  Understanding class hierarchies using concept analysis , 2000, TOPL.

[107]  Gerd Stumme,et al.  Acquiring Expert Knowledge for the Design of Conceptual Information Systems , 1999, EKAW.

[108]  Martin E. Dyer,et al.  Faster random generation of linear extensions , 1999, SODA '98.

[109]  Rudolf Wille,et al.  Mathematical Support for Empirical Theory Building , 1999, Electron. Notes Discret. Math..

[110]  B. Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[111]  Joshua Zhexue Huang,et al.  Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values , 1998, Data Mining and Knowledge Discovery.

[112]  Gerd Stumme Free Distributive Completions of Partial Complete Lattices , 1997 .

[113]  Gerd Stumme,et al.  Concept Exploration - A Tool for Creating and Exploring Conceptual Hierarchies , 1997, ICCS.

[114]  J. Michell Quantitative science and the definition of measurement in psychology , 1997 .

[115]  Rudolf Wille,et al.  Coordinatization of ordinal structures , 1996, Order.

[116]  Gerd Stumme,et al.  Local Scaling in Conceptual Data Systems , 1996, ICCS.

[117]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[118]  Uta Wille,et al.  Representation of Ordinal Contexts by Ordered n-Quasigroups , 1996, Eur. J. Comb..

[119]  S. Strahringer Direct products of convex-ordinal scales , 1994 .

[120]  Nathan Linial,et al.  The geometry of graphs and some of its algorithmic applications , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[121]  Gerd Stumme,et al.  A Geometrical Heuristic for Drawing Concept Lattices , 1994, GD.

[122]  M. Wild A Theory of Finite Closure Spaces Based on Implications , 1994 .

[123]  Deborah L. McGuinness,et al.  Integrated Support for Data Archeology , 1993, Int. J. Cooperative Inf. Syst..

[124]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[125]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[126]  I T Joliffe,et al.  Principal component analysis and exploratory factor analysis , 1992, Statistical methods in medical research.

[127]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[128]  Rudolf Wille,et al.  Subdirect product construction of concept lattices , 1987, Discret. Math..

[129]  Klaus Reuter,et al.  Matchings for linearly indecomposable modular lattices , 1987, Discret. Math..

[130]  K. Reuter A note on the number of irreducibles of subdirect products , 1986 .

[131]  Rudolf Wille,et al.  Tensorial decomposition of concept lattices , 1985 .

[132]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[133]  M. Yannakakis The Complexity of the Partial Order Dimension Problem , 1982 .

[134]  M. Gromov Groups of polynomial growth and expanding maps , 1981 .

[135]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[136]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[137]  John W. Tukey,et al.  Data Analysis and Regression: A Second Course in Statistics , 1977 .

[138]  Jacques Bertin,et al.  Semiologie graphique : les diagrammes les réseaux, les cartes , 1969 .

[139]  C. Coombs A theory of data. , 1965, Psychological review.

[140]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[141]  Frederic M. Lord,et al.  On the Statistical Treatment of Football Numbers. , 1953 .

[142]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[143]  Kenneth E. Anderson,et al.  MEASUREMENT IN SCIENCE , 1948 .

[144]  S S Stevens,et al.  On the Theory of Scales of Measurement. , 1946, Science.

[145]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[146]  L. Guttman A basis for scaling qualitative data. , 1944 .

[147]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[148]  R. Thouless,et al.  Quantitative Estimates of Sensory Events , 1932, Nature.

[149]  J. Garnett,et al.  General ability, cleverness and purpose , 1919 .

[150]  G. L. Collected Papers , 1912, Nature.

[151]  Sergei O. Kuznetsov,et al.  Formal Concept Analysis: From Knowledge Discovery to Knowledge Processing , 2020, A Guided Tour of Artificial Intelligence Research.

[152]  Tom Hanika,et al.  Conexp-Clj - A Research Tool for FCA , 2019, ICFCA.

[153]  Michel Dumontier,et al.  Data Science - Methods, infrastructure, and applications , 2017, Data Sci..

[154]  Ann Mische,et al.  Relational Sociology, Culture, and Agency , 2014 .

[155]  Frithjof Dau,et al.  An Extension of ToscanaJ for FCA-based Data Analysis over Triple Stores , 2011, CUBIST Workshop.

[156]  Megan N. Norris,et al.  Evaluating the Use of Exploratory Factor Analysis in Developmental Disability Psychological Research , 2010, Journal of autism and developmental disorders.

[157]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[158]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[159]  Vilém Vychodil,et al.  Formal Concepts as Optimal Factors in Boolean Factor Analysis: Implications and Experiments , 2007, CLA.

[160]  Menno-Jan Kraak,et al.  Carte figurative des pertes successives en hommes de l'Armée Française dans la campagne de Russie 1812-1813 or Napoleon's March on Mowcow by Charles Minard 1861 , 2007 .

[161]  Jeanne G. Harris,et al.  Competing on Analytics: The New Science of Winning , 2007 .

[162]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[163]  Aleš Keprt,et al.  Algorithms for binary factor analysis , 2006 .

[164]  Peter Becker,et al.  The ToscanaJ Suite for Implementing Conceptual Information Systems , 2005, Formal Concept Analysis.

[165]  Václav Snásel,et al.  Binary Factor Analysis with Help of Formal Concepts , 2004, CLA.

[166]  Jun Fujiki,et al.  Clustering Orders , 2003, Discovery Science.

[167]  Gerd Stumme,et al.  ToscanaJ – An Open Source Tool for Qualitative Data Analysis , 2002 .

[168]  R. Viertl On the Future of Data Analysis , 2002 .

[169]  Tero Harju,et al.  Ordered Sets , 2001 .

[170]  Gerd Stumme,et al.  Begriffliche Wissensverarbeitung: Methoden und Anwendungen , 2000 .

[171]  Rick H. Hoyle,et al.  Confirmatory Factor Analysis , 1983 .

[172]  Gerd Stumme,et al.  Conceptual on-line analytical processing , 2000 .

[173]  Gerd Stumme,et al.  Hierarchies of conceptual scales , 1999 .

[174]  Javier Montero,et al.  A Poset Dimension Algorithm , 1999, J. Algorithms.

[175]  Nicholas Chrisman,et al.  Rethinking Levels of Measurement for Cartography , 1998 .

[176]  Gerd Stumme,et al.  On-Line Analytical Processing with Conceptual Information Systems , 1998, FODO.

[177]  M Kanehisa,et al.  Organizing and computing metabolic pathway data in terms of binary relations. , 1997, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[178]  Gerd Stumme,et al.  Attribute Exploration with Background Implications and Exceptions , 1996 .

[179]  Gerd Stumme,et al.  Knowledge acquisition by distributive concept exploration , 1995 .

[180]  F. Baader Computing a Minimal Representation of the Subsumption Lattice of All Conjunctions of Concepts De ned in a Terminology ? , 1995 .

[181]  Rudolf Wille,et al.  Towards a Structure Theory for Ordinal Data , 1992 .

[182]  Martin Schader,et al.  Analyzing and Modeling Data and Knowledge , 1992 .

[183]  Gregory Piatetsky-Shapiro,et al.  Knowledge Discovery in Real Databases: A Report on the IJCAI-89 Workshop , 1991, AI Mag..

[184]  Wojciech A. Trybulec Partially Ordered Sets , 1990 .

[185]  Rudolf Wille,et al.  Congruence Lattices of Finite Lattices as Concept Lattices , 1990 .

[186]  B. Davey,et al.  Introduction to lattices and order , 1990 .

[187]  Rudolf Wille,et al.  Lattices in Data Analysis: How to Draw Them with a Computer , 1989 .

[188]  Patrick Suppes,et al.  Foundations of Measurement, Vol. II: Geometrical, Threshold, and Probabilistic Representations , 1989 .

[189]  Peter Eades,et al.  A Heuristic for Graph Drawing , 1984 .

[190]  Desmond Fearnley-Sander,et al.  Universal Algebra , 1982 .

[191]  Bernard Monjardet,et al.  Metrics on partially ordered sets - A survey , 1981, Discret. Math..

[192]  R. Forthofer,et al.  Rank Correlation Methods , 1981 .

[193]  M. Kane Measurement theory. , 1980, NLN publications.

[194]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[195]  G. Grätzer General Lattice Theory , 1978 .

[196]  D. Edwards The Structure of Superspace , 1975 .

[197]  R. Luce,et al.  Simultaneous conjoint measurement: A new type of fundamental measurement , 1964 .

[198]  Max F. Meyer,et al.  The Proof and Measurement of Association between Two Things. , 1904 .

[199]  Facundo Mémoli,et al.  Eurographics Symposium on Point-based Graphics (2007) on the Use of Gromov-hausdorff Distances for Shape Comparison , 2022 .