On the application of the global matched filter to DOA estimation with uniform circular arrays

The problem of estimating the direction of arrivals (azimuths) of narrow-band sources impinging on a uniform circular array is considered. We present a method that uses as input the values of a small number of uniformly spaced beams and apply a model-fitting approach taking into account the statistical properties of the beams. The approach called the "global matched filter" fits simultaneously to the observations all the elements needed to explain them. It chooses among all the potential representations the one with minimal energy. The method drastically improves upon the conventional beamformer and has a performance comparable to the best high resolution techniques. It further applies when the number of sources exceeds the number of sensors, a situation that cannot be handled by standard high resolution techniques.

[1]  Michael M. Goodwin,et al.  Matching pursuit with damped sinusoids , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[2]  Douglas A. Gray,et al.  Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays , 1998, IEEE Trans. Signal Process..

[3]  David G. Long,et al.  Array signal processing , 1985, IEEE Trans. Acoust. Speech Signal Process..

[4]  Ahmed H. Tewfik,et al.  On the application of uniform linear array bearing estimation techniques to uniform circular arrays , 1992, IEEE Trans. Signal Process..

[5]  Philippe Forster,et al.  Rectification of cross spectral matrices for arrays of arbitrary geometry , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[6]  B. Friedlander,et al.  Direction finding using spatial smoothing with interpolated arrays , 1992 .

[7]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[8]  Yoram Bresler,et al.  A new algorithm for computing sparse solutions to linear inverse problems , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[9]  Ahmed H. Tewfik,et al.  Optimal subset selection for adaptive signal representation , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[10]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[11]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[12]  G. Bienvenu,et al.  Optimality of high resolution array processing using the eigensystem approach , 1983 .

[13]  Michael D. Zoltowski,et al.  Eigenstructure techniques for 2-D angle estimation with uniform circular arrays , 1994, IEEE Trans. Signal Process..

[14]  Jean-Jacques Fuchs Extension of the Pisarenko method to sparse linear arrays , 1997, IEEE Trans. Signal Process..

[15]  C. Burrus,et al.  Array Signal Processing , 1989 .

[16]  G. R. Walsh,et al.  Methods Of Optimization , 1976 .

[17]  Jean-Jacques Fuchs,et al.  Detection and estimation of superimposed signals , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[18]  D. Brillinger Time Series: Data Analysis and Theory , 1981 .

[19]  Philippe Forster Generalized rectification of cross spectral matrices for arrays of arbitrary geometry , 2001, IEEE Trans. Signal Process..

[20]  A. D. Olver,et al.  The Handbook of Antenna Design , 1986 .

[21]  R. Fletcher Practical Methods of Optimization , 1988 .