Homotopy, symmetry, and non-Hermitian band topology

Non-Hermitian matrices are ubiquitous in the description of nature ranging from classical dissipative systems, including optical, electrical, and mechanical metamaterials, to scattering of waves and open quantum many-body systems. Seminal K-theory classifications of non-Hermitian systems based on line and point gaps have deepened the understanding of many physical phenomena. However, ample systems remain beyond this description; reference points and lines are in general unable to distinguish whether multiple non-Hermitian bands exhibit band crossings and braids. To remedy this we consider the complementary notions of non-Hermitian band gaps and separation gaps that crucially include a broad class of multi-band scenarios, enabling the description of generic band structures with symmetries. With these concepts, we provide a unified and systematic classification of both gapped and nodal systems in the presence of physically relevant parity-time ($\mathcal{PT}$) and pseudo-Hermitian symmetries using homotopy theory. This uncovers new fragile phases and, remarkably, also implies new stable phenomena stemming from the topology of both eigenvalues and eigenvectors. In particular, we reveal different Abelian and non-Abelian phases in $\mathcal{PT}$-symmetric systems, described by frame and braid topology. The corresponding invariants are robust to symmetry-preserving perturbations that do not close band gaps, and they also predict the deformation rules of nodal phases. We further demonstrate that spontaneous $\mathcal{PT}$ symmetry breaking is captured by a Chern-Euler description, a fingerprint of unprecedented non-Hermitian topology. These results open the door for theoretical and experimental exploration of a rich variety of novel topological phenomena in a wide range of physical platforms.

[1]  Kai Bai,et al.  Braiding topology of symmetry-protected degeneracy points in non-Hermitian systems , 2023, Physical Review B.

[2]  S. Fan,et al.  Eigenenergy braids in 2D photonic crystals , 2023, 2307.14845.

[3]  P. Brouwer,et al.  Homotopic classification of band structures: Stable, fragile, delicate, and stable representation-protected topology , 2023, Physical Review B.

[4]  Chunyin Qiu,et al.  Experimental characterization of three-band braid relations in non-Hermitian acoustic lattices , 2023, Physical Review Research.

[5]  Guancong Ma,et al.  Non-Abelian physics in light and sound , 2023, Science.

[6]  Ruo-Yang Zhang,et al.  Non-Hermitian swallowtail catastrophe revealing transitions among diverse topological singularities , 2023, Nature Physics.

[7]  P. Xue,et al.  Experimental simulation of symmetry-protected higher-order exceptional points with single photons. , 2023, Science advances.

[8]  Robert-Jan Slager,et al.  Quantum geometry beyond projective single bands , 2023, 2303.02180.

[9]  M. Fistul,et al.  Formation of exceptional points in pseudo-Hermitian systems , 2023, Physical Review A.

[10]  Ching Hua Lee,et al.  Topological non-Hermitian skin effect , 2023, Frontiers of Physics.

[11]  Chunyin Qiu,et al.  Observation of Acoustic Non-Hermitian Bloch Braids and Associated Topological Phase Transitions. , 2022, Physical review letters.

[12]  P. Ribeiro,et al.  Symmetry Classification of Many-Body Lindbladians: Tenfold Way and Beyond , 2022, Physical Review X.

[13]  S. Ryu,et al.  Symmetry of Open Quantum Systems: Classification of Dissipative Quantum Chaos , 2022, PRX Quantum.

[14]  Ipsita Mandal,et al.  Enhanced eigenvector sensitivity and algebraic classification of sublattice-symmetric exceptional points , 2022, Physical Review B.

[15]  E. Bergholtz,et al.  Braid-protected topological band structures with unpaired exceptional points , 2022, Physical Review Research.

[16]  K. Ding,et al.  Exceptional Non-Abelian Topology in Multiband Non-Hermitian Systems. , 2022, Physical review letters.

[17]  A. Miranowicz,et al.  Dynamically crossing diabolic points while encircling exceptional curves: A programmable symmetric-asymmetric multimode switch , 2022, Nature communications.

[18]  Abhijeet Melkani Degeneracies and symmetry breaking in pseudo-Hermitian matrices , 2022, Physical Review Research.

[19]  S. Ryu,et al.  Entanglement Phase Transition Induced by the Non-Hermitian Skin Effect , 2022, Physical Review X.

[20]  Masatoshi Sato,et al.  Non-Hermitian Topological Phenomena: A Review , 2022, Annual Review of Condensed Matter Physics.

[21]  Flore K. Kunst,et al.  Symmetry-protected exceptional and nodal points in non-Hermitian systems , 2022, SciPost Physics.

[22]  Robert-Jan Slager,et al.  Multi-gap topological conversion of Euler class via band-node braiding: minimal models, $PT$-linked nodal rings, and chiral heirs , 2022, 2203.16741.

[23]  E. Bergholtz,et al.  Liouvillian skin effect in an exactly solvable model , 2022, Physical Review Research.

[24]  Flore K. Kunst,et al.  Realizing exceptional points of any order in the presence of symmetry , 2022, Physical Review Research.

[25]  Z. Q. Zhang,et al.  Non-Abelian Frame Charge Flow in Photonic Media , 2022, Physical Review X.

[26]  F. Wilczek,et al.  Exceptional dynamics of interacting spin liquids , 2022, Physical Review Research.

[27]  Luyao Jiang,et al.  Measuring the knot of non-Hermitian degeneracies and non-commuting braids , 2021, Nature.

[28]  Shu Chen,et al.  Knot topology of exceptional point and non-Hermitian no-go theorem , 2021, 2111.11346.

[29]  A. Dutt,et al.  Eigenvalue Topology of Non-Hermitian Band Structures in Two and Three Dimensions , 2021, 2022 Conference on Lasers and Electro-Optics (CLEO).

[30]  S. Fan,et al.  Topological complex-energy braiding of non-Hermitian bands , 2021, Nature.

[31]  J. C. Budich,et al.  Fourth-order exceptional points in correlated quantum many-body systems , 2021, Physical Review B.

[32]  E. Bergholtz,et al.  Classification of exceptional nodal topologies protected by PT symmetry , 2021, Physical Review B.

[33]  A. Friesem,et al.  Anyonic-parity-time symmetry in complex-coupled lasers , 2021, Science advances.

[34]  E. Bergholtz,et al.  Symmetry and Higher-Order Exceptional Points. , 2021, Physical review letters.

[35]  Y. Hatsugai,et al.  Symmetry-Protected Multifold Exceptional Points and Their Topological Characterization. , 2021, Physical review letters.

[36]  Jiangping Hu,et al.  Fermion Doubling Theorems in Two-Dimensional Non-Hermitian Systems for Fermi Points and Exceptional Points. , 2021, Physical review letters.

[37]  Wei Zhang,et al.  Experimental Determination of PT-Symmetric Exceptional Points in a Single Trapped Ion. , 2021, Physical review letters.

[38]  Yang Qi,et al.  DMFT Reveals the Non-Hermitian Topology and Fermi Arcs in Heavy-Fermion Systems. , 2020, Physical review letters.

[39]  Ching Hua Lee Exceptional Bound States and Negative Entanglement Entropy. , 2020, Physical review letters.

[40]  Ching Hua Lee,et al.  Topological Defect Engineering and PT Symmetry in Non-Hermitian Electrical Circuits. , 2020, Physical review letters.

[41]  P. Xue,et al.  Simulating Exceptional Non-Hermitian Metals with Single-Photon Interferometry. , 2020, Physical review letters.

[42]  Stefan Friedl Algebraic topology , 2020, Graduate Studies in Mathematics.

[43]  N. Read,et al.  Non-Hermitian adiabatic transport in spaces of exceptional points , 2020 .

[44]  Robert-Jan Slager,et al.  Geometric approach to fragile topology beyond symmetry indicators , 2020, Physical Review B.

[45]  K. Kawabata,et al.  Higher-order non-Hermitian skin effect , 2020, 2008.07237.

[46]  C. T. Chan,et al.  Experimental observation of non-Abelian topological charges and edge states , 2020, Nature.

[47]  Robert-Jan Slager,et al.  Topological Euler Class as a Dynamical Observable in Optical Lattices. , 2020, Physical review letters.

[48]  S. Diehl,et al.  Symmetry Classes of Open Fermionic Quantum Matter , 2020, Physical Review X.

[49]  E. Zhao,et al.  Knots and Non-Hermitian Bloch Bands. , 2020, Physical review letters.

[50]  B. Rosenow,et al.  Exponentially growing bulk Green functions as signature of nontrivial non-Hermitian winding number in one dimension , 2020, 2007.07026.

[51]  Quansheng Wu,et al.  Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe , 2020 .

[52]  Flore K. Kunst,et al.  Phase transitions and generalized biorthogonal polarization in non-Hermitian systems , 2020, 2006.12898.

[53]  Y. Ashida,et al.  Non-Hermitian physics , 2020, Advances in Physics.

[54]  Jiangping Hu,et al.  Jones Polynomial and Knot Transitions in Hermitian and non-Hermitian Topological Semimetals. , 2020, Physical review letters.

[55]  Masahito Ueda,et al.  Liouvillian Skin Effect: Slowing Down of Relaxation Processes without Gap Closing. , 2020, Physical review letters.

[56]  E. Bergholtz,et al.  Non-Hermitian Topological Sensors. , 2020, Physical review letters.

[57]  S. Fan,et al.  Alice strings in non-Hermitian systems , 2020 .

[58]  Jan Carl Budich,et al.  Exceptional topology of non-Hermitian systems , 2019, 1912.10048.

[59]  R. Mong,et al.  Homotopical characterization of non-Hermitian band structures , 2019, Physical Review B.

[60]  B. Bernevig,et al.  Twisted bulk-boundary correspondence of fragile topology , 2019, Science.

[61]  N. Cooper,et al.  Tenfold Way for Quadratic Lindbladians. , 2019, Physical review letters.

[62]  H. Schomerus Nonreciprocal response theory of non-Hermitian mechanical metamaterials: Response phase transition from the skin effect of zero modes , 2019, Physical Review Research.

[63]  N. Kawakami,et al.  Chiral-symmetry protected exceptional torus in correlated nodal-line semimetals , 2019, Physical Review B.

[64]  N. Regnault,et al.  Defining a bulk-edge correspondence for non-Hermitian Hamiltonians via singular-value decomposition , 2019, Physical Review A.

[65]  E. Bergholtz,et al.  Hyperbolic nodal band structures and knot invariants , 2019, SciPost Physics.

[66]  N. Regnault,et al.  Fragile Phases as Affine Monoids: Classification and Material Examples , 2019 .

[67]  F. Song,et al.  Non-Hermitian Skin Effect and Chiral Damping in Open Quantum Systems. , 2019, Physical review letters.

[68]  F. Nori,et al.  Parity–time symmetry and exceptional points in photonics , 2019, Nature Materials.

[69]  E. Bergholtz,et al.  Non-Hermitian Weyl physics in topological insulator ferromagnet junctions , 2019, Physical Review Research.

[70]  K. Kawabata,et al.  Classification of Exceptional Points and Non-Hermitian Topological Semimetals. , 2019, Physical review letters.

[71]  Dan S. Borgnia,et al.  Non-Hermitian Boundary Modes and Topology. , 2019, Physical review letters.

[72]  G. Refael,et al.  Bulk-Boundary Correspondence for Non-Hermitian Hamiltonians via Green Functions. , 2019, Physical review letters.

[73]  M. Miri,et al.  Exceptional points in optics and photonics , 2019, Science.

[74]  Hengyun Zhou,et al.  Periodic table for topological bands with non-Hermitian symmetries , 2018, Physical Review B.

[75]  Masahito Ueda,et al.  Symmetry and Topology in Non-Hermitian Physics , 2018, Physical Review X.

[76]  Flore K. Kunst,et al.  Non-Hermitian extensions of higher-order topological phases and their biorthogonal bulk-boundary correspondence , 2018, Physical Review B.

[77]  Kunkun Wang,et al.  Observation of Critical Phenomena in Parity-Time-Symmetric Quantum Dynamics. , 2018, Physical review letters.

[78]  Ching Hua Lee,et al.  Tidal surface states as fingerprints of non-Hermitian nodal knot metals , 2018, Communications Physics.

[79]  E. Bergholtz,et al.  Knotted non-Hermitian metals , 2018, Physical Review B.

[80]  Jiangbin Gong,et al.  Hybrid Higher-Order Skin-Topological Modes in Nonreciprocal Systems. , 2018, Physical review letters.

[81]  N. Kawakami,et al.  Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry , 2018, Physical Review B.

[82]  B. Zhen,et al.  Exceptional surfaces in PT-symmetric non-Hermitian photonic systems , 2018, Optica.

[83]  Franco Nori,et al.  Second-Order Topological Phases in Non-Hermitian Systems. , 2018, Physical review letters.

[84]  T. Yokoyama,et al.  Topological exceptional surfaces in non-Hermitian systems with parity-time and parity-particle-hole symmetries , 2018, Physical Review B.

[85]  Flore K. Kunst,et al.  Symmetry-protected nodal phases in non-Hermitian systems , 2018, Physical Review B.

[86]  Ching Hua Lee,et al.  Anatomy of skin modes and topology in non-Hermitian systems , 2018, Physical Review B.

[87]  Kevin P. Chen,et al.  Experimental realization of a Weyl exceptional ring , 2018, Nature Photonics.

[88]  Quansheng Wu,et al.  Non-Abelian band topology in noninteracting metals , 2018, Science.

[89]  Bohm-Jung Yang,et al.  Failure of Nielsen-Ninomiya Theorem and Fragile Topology in Two-Dimensional Systems with Space-Time Inversion Symmetry: Application to Twisted Bilayer Graphene at Magic Angle , 2018, Physical Review X.

[90]  E. Bergholtz,et al.  Exceptional links and twisted Fermi ribbons in non-Hermitian systems , 2018, Physical Review A.

[91]  A. Clerk,et al.  Phase-Dependent Chiral Transport and Effective Non-Hermitian Dynamics in a Bosonic Kitaev-Majorana Chain , 2018, Physical Review X.

[92]  Flore K. Kunst,et al.  Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems. , 2018, Physical review letters.

[93]  N. Kawakami,et al.  Non-Hermitian perspective of the band structure in heavy-fermion systems , 2018, Physical Review B.

[94]  C. Ciuti,et al.  Spectral theory of Liouvillians for dissipative phase transitions , 2018, Physical Review A.

[95]  A. Black‐Schaffer,et al.  Wilson loop approach to fragile topology of split elementary band representations and topological crystalline insulators with time-reversal symmetry , 2018, Physical Review B.

[96]  F. Song,et al.  Non-Hermitian Chern Bands. , 2018, Physical review letters.

[97]  Zhong Wang,et al.  Edge States and Topological Invariants of Non-Hermitian Systems. , 2018, Physical review letters.

[98]  Y. Ashida,et al.  Topological Phases of Non-Hermitian Systems , 2018, Physical Review X.

[99]  Demetrios N. Christodoulides,et al.  Non-Hermitian physics and PT symmetry , 2018, Nature Physics.

[100]  F. Haldane,et al.  Nobel lecture: Topological quantum matter , 2017 .

[101]  A. Vishwanath,et al.  Fragile Topology and Wannier Obstructions. , 2017, Physical review letters.

[102]  M. Soljačić,et al.  Observation of bulk Fermi arc and polarization half charge from paired exceptional points , 2017, Science.

[103]  L. Fu,et al.  Non-Hermitian topological theory of finite-lifetime quasiparticles: Prediction of bulk Fermi arc due to exceptional point , 2017, Physical Review B.

[104]  Liang Fu,et al.  Topological Band Theory for Non-Hermitian Hamiltonians. , 2017, Physical review letters.

[105]  L. Tu,et al.  Differential Geometry: Connections, Curvature, and Characteristic Classes , 2017 .

[106]  Y. Xiong Why does bulk boundary correspondence fail in some non-hermitian topological models , 2017, 1705.06039.

[107]  Ching Hua Lee,et al.  Topolectrical Circuits , 2017, Communications Physics.

[108]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[109]  Claudia Felser,et al.  Topological Materials: Weyl Semimetals , 2016, 1611.04182.

[110]  L. Duan,et al.  Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas. , 2016, Physical review letters.

[111]  Y. Zhao,et al.  PT-Symmetric Real Dirac Fermions and Semimetals. , 2016, Physical review letters.

[112]  Franco Nori,et al.  Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems. , 2016, Physical review letters.

[113]  Xiao-Gang Wen,et al.  Colloquium : Zoo of quantum-topological phases of matter , 2016, 1610.03911.

[114]  S. Huber Topological mechanics , 2016, Nature Physics.

[115]  Tony E. Lee,et al.  Anomalous Edge State in a Non-Hermitian Lattice. , 2016, Physical review letters.

[116]  C. Felser,et al.  Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.

[117]  H. Xu,et al.  Topological energy transfer in an optomechanical system with exceptional points , 2016, Nature.

[118]  Franco Nori,et al.  Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition. , 2015, Physical review letters.

[119]  L'aszl'o Oroszl'any,et al.  A Short Course on Topological Insulators: Band-structure topology and edge states in one and two dimensions , 2015, 1509.02295.

[120]  D. Brody Consistency of PT-symmetric quantum mechanics , 2015, 1508.02190.

[121]  Shinsei Ryu,et al.  Classification of topological quantum matter with symmetries , 2015, 1505.03535.

[122]  Xuefeng Zhu,et al.  PT-symmetric acoustics , 2015 .

[123]  G. Montambaux,et al.  Dirac Fermions in condensed matter and beyond , 2014, 1410.4098.

[124]  Victor V. Albert,et al.  Topological properties of linear circuit lattices. , 2014, Physical review letters.

[125]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[126]  Ulrich Kuhl,et al.  Selective enhancement of topologically induced interface states in a dielectric resonator chain , 2014, Nature Communications.

[127]  Hong Chen,et al.  Experimental demonstration of a coherent perfect absorber with PT phase transition. , 2014, Physical review letters.

[128]  Andrew J. Daley,et al.  Quantum trajectories and open many-body quantum systems , 2014, 1405.6694.

[129]  C. Bender,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[130]  W. Heiss,et al.  The physics of exceptional points , 2012, 1210.7536.

[131]  U. Peschel,et al.  Parity–time synthetic photonic lattices , 2012, Nature.

[132]  T. Hughes,et al.  Absence of topological insulator phases in non-Hermitian PT-symmetric Hamiltonians , 2011, 1107.1064.

[133]  Hui Cao,et al.  Unidirectional invisibility induced by PT-symmetric periodic structures. , 2011, Physical review letters.

[134]  M. Segev,et al.  PT-symmetry in honeycomb photonic lattices , 2011, 1103.3389.

[135]  Liang Fu,et al.  Topological crystalline insulators. , 2010, Physical review letters.

[136]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[137]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[138]  Shinsei Ryu,et al.  Topological insulators and superconductors: tenfold way and dimensional hierarchy , 2009, 0912.2157.

[139]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[140]  Ingrid Rotter,et al.  A non-Hermitian Hamilton operator and the physics of open quantum systems , 2009 .

[141]  Alexei Kitaev,et al.  Periodic table for topological insulators and superconductors , 2009, 0901.2686.

[142]  Ali Mostafazadeh,et al.  Pseudo-Hermitian Representation of Quantum Mechanics , 2008, 0810.5643.

[143]  Ying Ran,et al.  Topological surface States in three-dimensional magnetic insulators. , 2008, Physical review letters.

[144]  Shachar Klaiman,et al.  Visualization of branch points in PT-symmetric waveguides. , 2008, Physical review letters.

[145]  T. Prosen Third quantization: a general method to solve master equations for quadratic open Fermi systems , 2008, 0801.1257.

[146]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[147]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[148]  S. Raghu,et al.  Analogs of quantum-Hall-effect edge states in photonic crystals , 2006, cond-mat/0602501.

[149]  C. Kane,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[150]  S. Raghu,et al.  Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. , 2005, Physical review letters.

[151]  M. Berry Physics of Nonhermitian Degeneracies , 2004 .

[152]  T. Friedrich,et al.  Differential forms in ℝⁿ , 2002 .

[153]  Shinsei Ryu,et al.  Topological origin of zero-energy edge states in particle-hole symmetric systems. , 2001, Physical review letters.

[154]  D. Bernard,et al.  A Classification of Non-Hermitian Random Matrices , 2001, cond-mat/0110649.

[155]  A. Mostafazadeh Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian , 2001, math-ph/0107001.

[156]  Yimin Wei,et al.  JORDAN CANONICAL FORM OF A PARTITIONED COMPLEX MATRIX AND ITS APPLICATION TO REAL QUATERNION MATRICES , 2001 .

[157]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[158]  Nelson,et al.  Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.

[159]  O. W. Greenberg,et al.  The Quantum Theory of Fields, Vol. 1: Foundations , 1995 .

[160]  Zoller,et al.  Monte Carlo simulation of the atomic master equation for spontaneous emission. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[161]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[162]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[163]  D. Thouless Wannier functions for magnetic sub-bands , 1984 .

[164]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[165]  B. Simon,et al.  Homotopy and Quantization in Condensed Matter Physics , 1983 .

[166]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (II). Intuitive topological proof , 1981 .

[167]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (I). Proof by homotopy theory , 1981 .

[168]  N. D. Mermin,et al.  The topological theory of defects in ordered media , 1979 .

[169]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[170]  L. Infeld Quantum Theory of Fields , 1949, Nature.

[171]  H. O. Erdin Characteristic Classes , 2004 .

[172]  DAAN KRAMMER,et al.  Braid groups are , 2002 .

[173]  Y. Makhlin,et al.  Topology of vortex-soliton intersection: Invariants and Torus homotopy , 1995 .

[174]  Alexei A. Maradudin Edge Modes , 1974 .

[175]  Tosio Kato Perturbation theory for linear operators , 1966 .

[176]  N. Wiegmann,et al.  Some Theorems On Matrices With Real Quaternion Elements , 1955, Canadian Journal of Mathematics.

[177]  I. Miyazaki,et al.  AND T , 2022 .