An Associative Memory Approach to Healthcare Monitoring and Decision Making

The rapid proliferation of connectivity, availability of ubiquitous computing, miniaturization of sensors and communication technology, have changed healthcare in all its areas, creating the well-known healthcare paradigm of e-Health. In this paper, an embedded system capable of monitoring, learning and classifying biometric signals is presented. The machine learning model is based on associative memories to predict the presence or absence of coronary artery disease in patients. Classification accuracy, sensitivity and specificity results show that the performance of our proposal exceeds the performance achieved by each of the fifty widely known algorithms against which it was compared.

[1]  Oscar Camacho Nieto,et al.  Collaborative learning based on associative models: Application to pattern classification in medical datasets , 2015, Comput. Hum. Behav..

[2]  Karl Steinbuch,et al.  Nichtdigitale lernmatrizen als perzeptoren , 2004, Kybernetik.

[3]  Omessaad Hamdi,et al.  eHealth: Survey on research projects, comparative study of telemonitoring architectures and main issues , 2014, Journal of Network and Computer Applications.

[4]  Karl Steinbuch,et al.  Learning Matrices and Their Applications , 1963, IEEE Trans. Electron. Comput..

[5]  Geyong Min,et al.  Advanced internet of things for personalised healthcare systems: A survey , 2017, Pervasive Mob. Comput..

[6]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[7]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[8]  Oscar Camacho Nieto,et al.  An associative memory approach to medical decision support systems , 2012, Comput. Methods Programs Biomed..

[9]  Oscar Camacho Nieto,et al.  Instance-based ontology matching for e-learning material using an associative pattern classifier , 2017, Comput. Hum. Behav..

[10]  P. K. Anooj,et al.  Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules , 2012, J. King Saud Univ. Comput. Inf. Sci..

[11]  Ian H. Witten,et al.  Data mining - practical machine learning tools and techniques, Second Edition , 2005, The Morgan Kaufmann series in data management systems.

[12]  Lorraine Frisina,et al.  The State and Healthcare: Comparing OECD Countries , 2010 .

[13]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[14]  Karl Steinbuch,et al.  Die Lernmatrix , 2004, Kybernetik.

[15]  Hanna Suominen,et al.  Text mining and information analysis of health documents , 2014, Artif. Intell. Medicine.

[16]  Ron Kohavi,et al.  The Power of Decision Tables , 1995, ECML.

[17]  Ian H. Witten,et al.  Stacking Bagged and Dagged Models , 1997, ICML.

[18]  Eibe Frank,et al.  Speeding Up Logistic Model Tree Induction , 2005, PKDD.

[19]  Cristina Masella,et al.  Telemedicine services: How to make them last over time , 2017 .

[20]  Yves Le Traon,et al.  A systematic review on the engineering of software for ubiquitous systems , 2016, J. Syst. Softw..

[21]  Vincenzo Della Mea,et al.  What is e-Health (2): The death of telemedicine? , 2001, Journal of medical Internet research.

[22]  V. Radeka,et al.  A Critical Comparison of Two Kinds of Adaptive Classification Networks , 2006 .

[23]  Yi-Ping Phoebe Chen,et al.  Association rule mining to detect factors which contribute to heart disease in males and females , 2013, Expert Syst. Appl..

[24]  Kemal Polat,et al.  A new feature selection method on classification of medical datasets: Kernel F-score feature selection , 2009, Expert Syst. Appl..

[25]  G. Schieber,et al.  Health care financing and delivery in developing countries. , 1999, Health affairs.

[26]  Saeid Nahavandi,et al.  Classification of healthcare data using genetic fuzzy logic system and wavelets , 2015, Expert Syst. Appl..

[27]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[28]  Nicos Christofides,et al.  Graph theory: An algorithmic approach (Computer science and applied mathematics) , 1975 .

[29]  Nidul Sinha,et al.  Hybrid expert system using case based reasoning and neural network for classification , 2014, BICA 2014.

[30]  Cornelio Yáñez-Márquez,et al.  Alpha–Beta bidirectional associative memories: theory and applications , 2007, Neural Processing Letters.

[31]  Kindie Biredagn Nahato,et al.  Hybrid approach using fuzzy sets and extreme learning machine for classifying clinical datasets , 2016 .

[32]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[33]  David Riaño,et al.  Improving medical decision trees by combining relevant health-care criteria , 2012, Expert Syst. Appl..

[34]  S. Cessie,et al.  Ridge Estimators in Logistic Regression , 1992 .

[35]  Nathaniel D. Bastian,et al.  A hybrid recommender system using artificial neural networks , 2017, Expert Syst. Appl..

[36]  Javier Reina-Tosina,et al.  A Machine-to-Machine protocol benchmark for eHealth applications - Use case: Respiratory rehabilitation , 2016, Comput. Methods Programs Biomed..

[37]  Oscar Camacho Nieto,et al.  Pattern classification using smallest normalized difference associative memory , 2017, Pattern Recognit. Lett..

[38]  Eibe Frank,et al.  Combining Naive Bayes and Decision Tables , 2008, FLAIRS.

[39]  Richard Berg,et al.  Sensitivity and specificity. , 2005, Clinical medicine & research.

[40]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[41]  Karl Steinbuch,et al.  Adaptive networks using learning matrices , 1965, Kybernetik.

[42]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[43]  Óscar Corcho,et al.  Enabling RDF Stream Processing for Sensor Data Management in the Environmental Domain , 2016, Int. J. Semantic Web Inf. Syst..

[44]  Imran Khan,et al.  Feature extraction through parallel Probabilistic Principal Component Analysis for heart disease diagnosis , 2017 .

[45]  H. Khanna Nehemiah,et al.  Neural network classifier optimization using Differential Evolution with Global Information and Back Propagation algorithm for clinical datasets , 2016, Appl. Soft Comput..

[46]  Antonio Pescapè,et al.  Integration of Cloud computing and Internet of Things: A survey , 2016, Future Gener. Comput. Syst..

[47]  Cesar A. García-Pérez,et al.  Improving the efficiency and reliability of wearable based mobile eHealth applications , 2017, Pervasive Mob. Comput..

[48]  Oscar Camacho Nieto,et al.  A new tool for engineering education: hepatitis diagnosis using associative memories , 2012 .

[49]  E. Kay,et al.  Graph Theory. An Algorithmic Approach , 1975 .

[50]  Achim Schmid,et al.  Five types of OECD healthcare systems: empirical results of a deductive classification. , 2013, Health policy.

[51]  Habib F. Rashvand,et al.  Ubiquitous wireless telemedicine , 2008, IET Commun..

[52]  Juan José Rodríguez Diez,et al.  Rotation Forest: A New Classifier Ensemble Method , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[54]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  David McSherry,et al.  Conversational case-based reasoning in medical decision making , 2011, Artif. Intell. Medicine.

[56]  Subhas Mukhopadhyay,et al.  Forecasting the behavior of an elderly using wireless sensors data in a smart home , 2013, Eng. Appl. Artif. Intell..

[57]  Matjaz Perc,et al.  Performance of small-world feedforward neural networks for the diagnosis of diabetes , 2017, Appl. Math. Comput..

[58]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[59]  Eibe Frank,et al.  Logistic Model Trees , 2003, Machine Learning.

[60]  Novruz Allahverdi,et al.  Design of a hybrid system for the diabetes and heart diseases , 2008, Expert Syst. Appl..