An extended framework for specifying and reasoning about proof systems
暂无分享,去创建一个
[1] Shôji Maehara,et al. Eine Darstellung der Intuitionistischen Logik in der Klassischen , 1954, Nagoya Mathematical Journal.
[2] Michael Mendler,et al. Propositional Lax Logic , 1997, Inf. Comput..
[3] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[4] Frank Pfenning,et al. System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.
[5] M. Nivat. Fiftieth volume of theoretical computer science , 1988 .
[6] Anna Zamansky,et al. Cut-free sequent calculi for C-systems with generalized finite-valued semantics , 2013, J. Log. Comput..
[7] Vivek Nigam,et al. Checking Proof Transformations with ASP , 2013, Theory Pract. Log. Program..
[8] Elaine Pimentel,et al. Using Linear Logic to Reason about Sequent Systems , 2002, TABLEAUX.
[9] Dale Miller,et al. Algorithmic specifications in linear logic with subexponentials , 2009, PPDP '09.
[10] Nissim Francez,et al. A Note on Harmony , 2012, J. Philos. Log..
[11] Gerhard Gentzen,et al. Investigations into Logical Deduction , 1970 .
[12] Dale Miller,et al. A formal framework for specifying sequent calculus proof systems , 2013, Theor. Comput. Sci..
[13] Elaine Pimentel,et al. Specifying Proof Systems in Linear Logic with Subexponentials , 2010, LSFA.
[14] Helmut Schwichtenberg,et al. Basic proof theory , 1996, Cambridge tracts in theoretical computer science.
[15] Hugo Herbelin. Séquents qu'on calcule: de l'interprétation du calcul des séquents comme calcul de lambda-termes et comme calcul de stratégies gagnantes. (Computing with sequents: on the interpretation of sequent calculus as a calculus of lambda-terms and as a calculus of winning strategies) , 1995 .
[16] Vincent Danos,et al. The Structure of Exponentials: Uncovering the Dynamics of Linear Logic Proofs , 1993, Kurt Gödel Colloquium.
[17] Dale Miller,et al. From Proofs to Focused Proofs: A Modular Proof of Focalization in Linear Logic , 2007, CSL.
[18] Patrick Lincoln,et al. Linear logic , 1992, SIGA.
[19] Arnon Avron,et al. Canonical Propositional Gentzen-Type Systems , 2001, IJCAR.
[20] Frank Pfenning,et al. Structural cut elimination , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.
[21] Dale Miller,et al. On the Specification of Sequent Systems , 2005, LPAR.
[22] Roy Dyckhoff,et al. LJQ: A Strongly Focused Calculus for Intuitionistic Logic , 2006, CiE.
[23] Sara Negri,et al. Proof Analysis: A Contribution to Hilbert's Last Problem , 2011 .
[24] Vivek Nigam,et al. Exploiting non-canonicity in the sequent calculus , 2009 .
[25] Frank Pfenning,et al. Efficient resource management for linear logic proof search , 1996, Theor. Comput. Sci..
[26] James Harland,et al. A contribution to automated-oriented reasoning about permutability of sequent calculi rules , 2013, Comput. Sci. Inf. Syst..
[27] Andrea Masini,et al. A modal view of linear logic , 1994, Journal of Symbolic Logic.
[28] Kazushige Terui,et al. From Axioms to Analytic Rules in Nonclassical Logics , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.
[29] JEAN-MARC ANDREOLI,et al. Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..
[30] Roy Dyckhoff,et al. Admissibility of Structural Rules for Contraction-Free Systems of Intuitionistic Logic , 2000, J. Symb. Log..
[31] Sara Negri,et al. Proof Analysis in Modal Logic , 2005, J. Philos. Log..
[32] Dale Miller,et al. A Framework for Proof Systems , 2010, Journal of Automated Reasoning.
[33] Charles A. Stewart,et al. A Systematic Proof Theory for Several Modal Logics , 2004, Advances in Modal Logic.