An extended framework for specifying and reasoning about proof systems

It has been shown that linear logic can be successfully used as a framework for both specifying proof systems for a number of logics, as well as proving fundamental properties about the specified systems. This paper shows how to extend the framework with subexponentials in order to declaratively encode a wider range of proof systems, including a number of non-trivial proof systems such as multi-conclusion intuitionistic logic, classical modal logic S4, intuitionistic Lax logic, and Negri’s labelled proof systems for different modal logics. Moreover, we propose methods for checking whether an encoded proof system has important properties, such as if it admits cut-elimination, the completeness of atomic identity rules, and the invertibility of its inference rules. Finally, we present a tool implementing some of these specification/verification methods.

[1]  Shôji Maehara,et al.  Eine Darstellung der Intuitionistischen Logik in der Klassischen , 1954, Nagoya Mathematical Journal.

[2]  Michael Mendler,et al.  Propositional Lax Logic , 1997, Inf. Comput..

[3]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[4]  Frank Pfenning,et al.  System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.

[5]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[6]  Anna Zamansky,et al.  Cut-free sequent calculi for C-systems with generalized finite-valued semantics , 2013, J. Log. Comput..

[7]  Vivek Nigam,et al.  Checking Proof Transformations with ASP , 2013, Theory Pract. Log. Program..

[8]  Elaine Pimentel,et al.  Using Linear Logic to Reason about Sequent Systems , 2002, TABLEAUX.

[9]  Dale Miller,et al.  Algorithmic specifications in linear logic with subexponentials , 2009, PPDP '09.

[10]  Nissim Francez,et al.  A Note on Harmony , 2012, J. Philos. Log..

[11]  Gerhard Gentzen,et al.  Investigations into Logical Deduction , 1970 .

[12]  Dale Miller,et al.  A formal framework for specifying sequent calculus proof systems , 2013, Theor. Comput. Sci..

[13]  Elaine Pimentel,et al.  Specifying Proof Systems in Linear Logic with Subexponentials , 2010, LSFA.

[14]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[15]  Hugo Herbelin Séquents qu'on calcule: de l'interprétation du calcul des séquents comme calcul de lambda-termes et comme calcul de stratégies gagnantes. (Computing with sequents: on the interpretation of sequent calculus as a calculus of lambda-terms and as a calculus of winning strategies) , 1995 .

[16]  Vincent Danos,et al.  The Structure of Exponentials: Uncovering the Dynamics of Linear Logic Proofs , 1993, Kurt Gödel Colloquium.

[17]  Dale Miller,et al.  From Proofs to Focused Proofs: A Modular Proof of Focalization in Linear Logic , 2007, CSL.

[18]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[19]  Arnon Avron,et al.  Canonical Propositional Gentzen-Type Systems , 2001, IJCAR.

[20]  Frank Pfenning,et al.  Structural cut elimination , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[21]  Dale Miller,et al.  On the Specification of Sequent Systems , 2005, LPAR.

[22]  Roy Dyckhoff,et al.  LJQ: A Strongly Focused Calculus for Intuitionistic Logic , 2006, CiE.

[23]  Sara Negri,et al.  Proof Analysis: A Contribution to Hilbert's Last Problem , 2011 .

[24]  Vivek Nigam,et al.  Exploiting non-canonicity in the sequent calculus , 2009 .

[25]  Frank Pfenning,et al.  Efficient resource management for linear logic proof search , 1996, Theor. Comput. Sci..

[26]  James Harland,et al.  A contribution to automated-oriented reasoning about permutability of sequent calculi rules , 2013, Comput. Sci. Inf. Syst..

[27]  Andrea Masini,et al.  A modal view of linear logic , 1994, Journal of Symbolic Logic.

[28]  Kazushige Terui,et al.  From Axioms to Analytic Rules in Nonclassical Logics , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[29]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[30]  Roy Dyckhoff,et al.  Admissibility of Structural Rules for Contraction-Free Systems of Intuitionistic Logic , 2000, J. Symb. Log..

[31]  Sara Negri,et al.  Proof Analysis in Modal Logic , 2005, J. Philos. Log..

[32]  Dale Miller,et al.  A Framework for Proof Systems , 2010, Journal of Automated Reasoning.

[33]  Charles A. Stewart,et al.  A Systematic Proof Theory for Several Modal Logics , 2004, Advances in Modal Logic.