Superoxide sensor based on hemin modified electrode

[1]  B. Ge,et al.  An electrochemical method for quantification of the radical scavenging activity of SOD , 1999 .

[2]  Frieder W. Scheller,et al.  Cytochrome C Based Superoxide Sensor for In Vivo Application , 1999 .

[3]  P. O'Brien,et al.  The effects of heme-binding proteins on the peroxidative and catalatic activities of hemin. , 1999, Free radical biology & medicine.

[4]  F. Scheller,et al.  Superoxide Dismutase Activity Measurement Using Cytochrome c-Modified Electrode. , 1999, Analytical Chemistry.

[5]  T. Tenno,et al.  Superoxide electrode based on covalently immobilized cytochrome c: modelling studies. , 1998, Free radical biology & medicine.

[6]  T. Malinski,et al.  Preparation and optimization of superoxide microbiosensor , 1998 .

[7]  G. Favero,et al.  A modified amperometric electrode for the determination of free radicals , 1997 .

[8]  U. Wollenberger,et al.  Electrochemical investigations of the intermolecular electron transfer between cytochrome c and NADPH-cytochrome P450-reductase , 1997 .

[9]  A. Scheeline,et al.  Amperometric sensors for simultaneous superoxide and hydrogen peroxide detection. , 1997, Analytical chemistry.

[10]  T. Ohsaka,et al.  Electrogeneration of Superoxide Ion on Thiophenol-Modified Gold Electrode in Aqueous Solution , 1995 .

[11]  N. Nakashima,et al.  An electroreflectance study of novel hemin-imidazole complexes at a pyrolytic graphite electrode , 1995 .

[12]  W. Schuhmann,et al.  Direct electrocatalytical H2O2 reduction with hemin covalently immobilized at a monolayer-modified gold electrode , 1995 .

[13]  T. Sagara,et al.  Application of potential-modulated UV-visible reflectance spectroscopy to electron transfer rate measurements for adsorbed species on electrode surfaces , 1995 .

[14]  F. Scheller,et al.  A method to detect superoxide radicals using Teflon membrane and superoxide dismutase , 1995 .

[15]  T. Sagara,et al.  Electroreflectance study of hemin adsorbed on a pyrolytic graphite electrode surface and its coadsorption with methylene blue , 1993 .

[16]  P. Bianco,et al.  Electrochemistry at a pyrolytic graphite electrode: Study of the adsorption of hemin , 1990 .

[17]  A. Jannakoudakis,et al.  Electrocatalytic reactions on carbon fibre electrodes modified by hemine I. Electroreduction of oxygen , 1989 .

[18]  E. Laviron General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems , 1979 .

[19]  H. Swofford,et al.  Adsorption preconcentration for the direct analytical determination of heme. , 1978, Analytical chemistry.

[20]  J. Divisek,et al.  Electrochemical generation and reactivity of the superoxide ion in aqueous solutions , 1975 .

[21]  G. Rotilio,et al.  Polarographic determination of superoxide dismutase. , 1975, Analytical biochemistry.

[22]  I. Fridovich,et al.  Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). , 1969, The Journal of biological chemistry.

[23]  I. Fridovich,et al.  The reduction of cytochrome c by milk xanthine oxidase. , 1968, The Journal of biological chemistry.

[24]  D. G. Davis,et al.  The electrode kinetics of cyanide hemichrome. , 1968, Biochemistry.

[25]  J. V. Bannister,et al.  Application of the electrochemistry of cytochrome c to the measurement of superoxide radical production. , 1989, Free radical research communications.

[26]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[27]  L. Müller,et al.  Zum Mechanismus der Reduktion von Fe3+-Protoporphyrin an Kohleelektroden beim pH-Wert 11,5 , 1977 .