Supercritical carbon dioxide cycles for power generation: A review

Power cycles running on carbon dioxide at supercritical pressure and temperature were introduced in the late ninety-sixties but, after a warm welcome to the theoretical performance announced, they were later abandoned in favour of standard combustion gas turbines. Nevertheless, the technology was brought forward about a decade ago and has since captured significant attention from the scientific and industrial community. The number of publications has risen exponentially and there are several experimental projects under development today. The performances of these cycles have been deeply analysed in literature, proving to be theoretically competitive.

[1]  C. Turchi,et al.  Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems , 2013 .

[2]  Mehdi Ashjaee,et al.  Conceptual design of a super-critical CO2 brayton cycle based on stack waste heat recovery for shazand power plant in Iran , 2014 .

[3]  Pardeep Garg,et al.  Supercritical carbon dioxide Brayton cycle for concentrated solar power , 2013 .

[4]  Rob Hovsapian,et al.  Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO2-based power plant operating under different seasonal conditions , 2016 .

[5]  Andrea Cioncolini,et al.  On the adoption of carbon dioxide thermodynamic cycles for nuclear power conversion: A case study applied to Mochovce 3 Nuclear Power Plant , 2016 .

[6]  Jeong-Ik Lee,et al.  A Study of S-CO2 Power Cycle for Waste Heat Recovery Using Isothermal Compressor , 2016 .

[7]  Gregory A. Johnson,et al.  Supercritical CO2 Cycle Development at Pratt and Whitney Rocketdyne , 2012 .

[8]  Yang Chen,et al.  Theoretical Study of a Carbon Dioxide Double Loop System , 2007 .

[9]  Younghee Ahn,et al.  The Design Study of Supercritical Carbon Dioxide Integral Experiment Loop , 2013 .

[10]  N. Galanis,et al.  Analysis of a carbon dioxide transcritical power cycle using a low temperature source , 2009 .

[11]  Eric M. Clementoni,et al.  Off-Nominal Component Performance in a Supercritical Carbon Dioxide Brayton Cycle , 2015 .

[12]  David S. Stapp,et al.  A Novel SCO2 Primary Cycle for Air-Combustible Fuels , 2014 .

[13]  Ricardo Chacartegui,et al.  Alternative cycles based on carbon dioxide for central receiver solar power plants , 2011 .

[14]  François Maréchal,et al.  Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles , 2013 .

[15]  J. I. Linares,et al.  A Novel Supercritical CO2 Power Cycle for Energy Conversion in Fusion Power Plants , 2013 .

[16]  G. Angelino Real Gas Effects in Carbon Dioxide Cycles , 1969 .

[17]  Hiroshi Yamaguchi,et al.  Hydrogen production from solar energy powered supercritical cycle using carbon dioxide , 2010 .

[18]  Robbie McNaughton,et al.  Effect of Pressure Drop and Reheating on Thermal and Exergetic Performance of Supercritical Carbon Dioxide Brayton Cycles Integrated With a Solar Central Receiver , 2015 .

[19]  Ricardo Chacartegui,et al.  A New Concept for High Temperature Fuel Cell Hybrid Systems Using Supercritical Carbon Dioxide , 2009 .

[20]  K. Goudarzi,et al.  A New Supercritical Carbon Dioxide Brayton Cycle with High Efficiency , 2017 .

[21]  Noam Lior,et al.  A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization , 2006 .

[22]  Seungjoon Baik,et al.  Investigation of the Bottoming Cycle for High Efficiency Combined Cycle Gas Turbine System With Supercritical Carbon Dioxide Power Cycle , 2015 .

[23]  Yann Le Moullec,et al.  Supercritical CO2 Brayton cycles for coal-fired power plants , 2016 .

[24]  Shengya Hou,et al.  Supercritical CO2 Cycle System Optimization of Marine Diesel Engine Waste Heat Recovery , 2015 .

[25]  Ho-Sang Ra,et al.  Development of the Supercritical Carbon Dioxide Power Cycle Experimental Loop in KIER , 2016 .

[26]  J. I. Linares,et al.  Supercritical CO2 Brayton power cycles for DEMO fusion reactor based on Helium Cooled Lithium Lead blanket , 2015 .

[27]  Per Lundqvist,et al.  Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production , 2010 .

[28]  Brian D. Iverson,et al.  Supercritical CO2 Brayton cycles for solar-thermal energy , 2013 .

[29]  Per Lundqvist,et al.  A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery , 2006 .

[30]  Yiping Dai,et al.  Thermodynamic Comparison and Optimization of Supercritical CO2 Brayton Cycles with a Bottoming Transcritical CO2 Cycle , 2016 .

[31]  V. A. Gavrilenko,et al.  The COOPERATE-demo power cycle , 1995 .

[32]  Jun Li,et al.  System optimisation and performance analysis of CO2 transcritical power cycle for waste heat recovery , 2016 .

[33]  Osie V. Combs An investigation of the supercritical CO2 cycle (Feher cycle) for shipboard application , 1977 .

[34]  Gary E Rochau,et al.  Evaluation of Recent Data From the Sandia National Laboratories Closed Brayton Cycle Testing , 2016 .

[35]  Danmei Xie,et al.  Thermo-Economic Analysis of a Recompression Supercritical CO2 Cycle Combined With a Transcritical CO2 Cycle , 2015 .

[36]  Gary E Rochau,et al.  Steady State Supercritical Carbon Dioxide Recompression Closed Brayton Cycle Operating Point Comparison With Predictions , 2014 .

[37]  Timothy Abram,et al.  Generation-IV nuclear power: A review of the state of the science , 2008 .

[38]  J. I. Linares,et al.  Thermal analysis of supercritical CO2 power cycles: Assessment of their suitability to the forthcoming sodium fast reactors , 2012 .

[39]  John J. Dyreby,et al.  Design Considerations for Supercritical Carbon Dioxide Brayton Cycles With Recompression , 2014 .

[40]  Ph. Mathieu,et al.  Zero-Emission MATIANT Cycle , 1998 .

[41]  D. Yogi Goswami,et al.  Analysis of Advanced Supercritical Carbon Dioxide Power Cycles With a Bottoming Cycle for Concentrating Solar Power Applications , 2013 .

[42]  Jeong-Ik Lee,et al.  Study of various Brayton cycle designs for small modular sodium-cooled fast reactor , 2014 .

[43]  Zhenying Zhang,et al.  Thermodynamic Analysis of Double-Stage Compression Transcritical CO2 Refrigeration Cycles with an Expander , 2015, Entropy.

[44]  Seong-O Kim,et al.  DEVELOPMENT OF A SUPERCRITICAL CO2BRAYTON ENERGY CONVERSION SYSTEM COUPLED WITH A SODIUM COOLED FAST REACTOR , 2009 .

[45]  Harald Taxt Walnum,et al.  Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions , 2013 .

[46]  Fahad A. Al-Sulaiman,et al.  Entropy, exergy, and cost analyses of solar driven cogeneration systems using supercritical CO2 Brayton cycles and MEE-TVC desalination system , 2016 .

[47]  D. Favrat,et al.  Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage , 2013 .

[48]  Craig Turchi,et al.  Supercritical CO2 Power Cycles: Design Considerations for Concentrating Solar Power , 2014 .

[49]  Robbie McNaughton,et al.  Thermodynamic feasibility of alternative supercritical CO2 Brayton cycles integrated with an ejector , 2016 .

[50]  Mortaza Yari,et al.  Thermodynamic analysis and optimization of a novel dual-evaporator system powered by electrical and solar energy sources , 2013 .

[51]  Jeong-Ik Lee,et al.  Potential advantages of coupling supercritical CO2 Brayton cycle to water cooled small and medium size reactor , 2012 .

[52]  Junfeng Wang,et al.  Research Activities on Supercritical Carbon Dioxide Power Conversion Technology in China , 2014 .

[53]  Jeong Ik Lee,et al.  Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application , 2014 .

[54]  Motoaki Utamura,et al.  Thermodynamic Analysis of Part-Flow Cycle Supercritical CO2 Gas Turbines , 2010 .

[55]  Regano Benito,et al.  An exergy analysis of recompression supercritical CO2 cycles with and without reheating , 2015 .

[56]  Robert Fuller,et al.  Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle , 2012 .

[57]  Jahar Sarkar,et al.  Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion , 2015 .

[58]  Seong Jun Bae,et al.  Hybrid System of Supercritical Carbon Dioxide Brayton Cycle and Carbon Dioxide Rankine Cycle Combined Fuel Cell , 2014 .

[59]  Brian D. Iverson,et al.  High-efficiency thermodynamic power cycles for concentrated solar power systems , 2014 .

[60]  Ricardo Chacartegui,et al.  Analysis of Intermediate Temperature Combined Cycles With a Carbon Dioxide Topping Cycle , 2008 .

[61]  Angelo Moreno,et al.  Numerical investigation of a MCFC (Molten Carbonate Fuel Cell) system hybridized with a supercritical CO2 Brayton cycle and compared with a bottoming Organic Rankine Cycle , 2015 .

[62]  Gequn Shu,et al.  Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat , 2017 .

[63]  J. I. Linares,et al.  Supercritical CO2 Brayton power cycles for DEMO (demonstration power plant) fusion reactor based on dual coolant lithium lead blanket , 2016 .

[64]  Zhenping Feng,et al.  Thermodynamic Analysis of a SCO2 Part-Flow Cycle Combined With an Organic Rankine Cycle With Liquefied Natural Gas as Heat Sink , 2014 .

[65]  Timothy James Held,et al.  Transforming Waste Heat to Power through Development of a CO2 - Based Power Cycle , 2011 .

[66]  Ata D. Akbari,et al.  Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle , 2014 .

[67]  José Ignacio Linares Hurtado,et al.  Enhanced arrangement for recuperators in supercritical CO2 Brayton power cycle for energy conversion in fusion reactors , 2014 .

[68]  J. I. Linares,et al.  Enhanced arrangement for recuperators in supercritical CO2 Brayton power cycle for energy conversion in fusion reactors , 2014 .

[69]  M. A. Reyes-Belmonte,et al.  Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant , 2016 .

[70]  V. Cheang,et al.  Benchmarking supercritical carbon dioxide cycles against steam Rankine cycles for Concentrated Solar Power , 2015 .

[71]  Christopher P. Sprague,et al.  Startup and Operation of a Supercritical Carbon Dioxide Brayton Cycle , 2013 .

[72]  Daniel Favrat,et al.  Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources , 2012 .

[73]  R. Tom Sawyer The closed cycle gas turbine, the most efficient turbine burning any fuel , 1983 .

[74]  Ingo Jahn,et al.  The University of Queensland refrigerant and supercritical CO2 test loop , 2016 .

[75]  Robbie McNaughton,et al.  Multi-objective thermodynamic optimisation of supercritical CO2 Brayton cycles integrated with solar central receivers , 2018 .

[76]  Rodney John Allam,et al.  The Oxy-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fuels Without Atmospheric Emissions , 2014 .

[77]  Klaus Brun,et al.  Comparison of Supercritical Carbon Dioxide Cycles for Oxy-Combustion , 2015 .

[78]  Hiroshi Yamaguchi,et al.  Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide , 2006 .

[79]  A. Moisseytsev,et al.  Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor. , 2009 .

[80]  Petr Hajek,et al.  Design of Experimental Loop With Supercritical Carbon Dioxide , 2014 .

[81]  Sean Lyons,et al.  Waste Heat to Power (WH2P) Applications Using a Supercritical CO2-Based Power Cycle , 2012 .

[82]  Ricardo Vasquez Padilla,et al.  Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers , 2015 .

[83]  Yiping Dai,et al.  Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study , 2016 .

[84]  Yang Chen,et al.  Theoretical research of carbon dioxide power cycle application in automobile industry to reduce vehicle’s fuel consumption , 2005 .

[85]  Vaclav Dostal,et al.  A supercritical carbon dioxide cycle for next generation nuclear reactors , 2004 .

[86]  Alexander R. Ludington,et al.  Tools for supercritical carbon dioxide cycle analysis and the cycle's applicability to sodium fast reactors , 2009 .

[87]  C. Turchi,et al.  A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications , 2013 .

[88]  Thomas M. Conboy,et al.  Control of a Supercritical CO2 Recompression Brayton Cycle Demonstration Loop , 2013 .

[89]  Hans Ulrich Frutschi,et al.  Closed-cycle gas turbines , 2005 .

[90]  Vaclav Dostal,et al.  High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors , 2006 .

[91]  Emanuele Martelli,et al.  Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle , 2016 .

[92]  Andrea Lazzaretto,et al.  Innovative biomass to power conversion systems based on cascaded supercritical CO2 Brayton cycles , 2014 .

[93]  Y. Jeong,et al.  Potential improvements of supercritical recompression CO2 Brayton cycle by mixing other gases for power conversion system of a SFR , 2011 .

[94]  E Iantovski,et al.  High efficient zero emission CO2-based power plant , 1997 .

[95]  Hang Zhao,et al.  Thermodynamic and Economic Analysis and Multi-Objective Optimization of Supercritical CO2 Brayton Cycles , 2015 .

[96]  Xinguo Li,et al.  A supercritical or transcritical Rankine cycle with ejector using low-grade heat , 2014 .

[97]  Xijia Lu,et al.  Integration and Optimization of Coal Gasification Systems With a Near-Zero Emissions Supercritical Carbon Dioxide Power Cycle , 2016 .

[98]  Jiangfeng Wang,et al.  Thermodynamic analysis of a transcritical CO2 power cycle driven by solar energy with liquified natural gas as its heat sink , 2012 .

[99]  E. Feher SUPERCRITICAL THERMODYNAMIC POWER CYCLE. , 1967 .

[100]  Klaus Brun,et al.  The Texas Cryogenic Oxy-Fuel Cycle (TCO): A Novel Approach to Power Generation With CO2 Options , 2012 .

[101]  Antonella Ingenito,et al.  Feasibility Study of a Supercritical Cycle as a Waste Heat Recovery System , 2013 .

[102]  Eric M. Clementoni,et al.  Supercritical Carbon Dioxide Brayton Power Cycle Development Overview , 2012 .

[103]  Pradip Dutta,et al.  Comparison of CO2 and Steam in Transcritical Rankine Cycles for Concentrated Solar Power , 2014 .

[104]  Abdul Nassar,et al.  DESIGNING SUPERCRITICAL CO2 POWER PLANTS USING AN INTEGRATED DESIGN SYSTEM , 2014 .

[105]  Jae Eun Cha,et al.  Cycle layout studies of S-CO2 cycle for the next generation nuclear system application , 2014 .

[106]  Jeong Ik Lee,et al.  Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle , 2016 .

[107]  Fahad A. Al-Sulaiman,et al.  Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations , 2017 .

[108]  E. I. Yantovski Stack downward : zero emission fuel-fired power plants concept , 1996 .

[109]  G. Angelino Carbon Dioxide Condensation Cycles For Power Production , 1968 .

[110]  Seungjoon Baik,et al.  Review of supercritical CO2 power cycle technology and current status of research and development , 2015 .

[111]  Andrew Urban Schroder,et al.  A Study of Power Cycles Using Supercritical Carbon Dioxide as the Working Fluid , 2016 .

[112]  Ricardo Chacartegui,et al.  A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical ca , 2011 .

[113]  R. Strub,et al.  HIGH PRESSURE INDIRECT CO$sub 2$ CLOSED-CYCLE GAS TURBINES. , 1970 .

[114]  R. Nihart,et al.  Sensitivity analysis of the MATIANT cycle , 1999 .

[115]  Olivier Boutin,et al.  Mapping of the thermodynamic performance of the supercritical CO2 cycle and optimisation for a small modular reactor and a sodium-cooled fast reactor , 2015 .

[116]  Gianfranco Caruso,et al.  Supercritical Carbon Dioxide Applications for Energy Conversion Systems , 2015 .