The Hsp60 protein of helicobacter pylori displays chaperone activity under acidic conditions

[1]  C. Robinson,et al.  The unusual mycobacterial chaperonins: evidence for in vivo oligomerization and specialization of function , 2012, Molecular microbiology.

[2]  Weizhe Hong,et al.  Chaperone-dependent mechanisms for acid resistance in enteric bacteria. , 2012, Trends in microbiology.

[3]  J. Buchner,et al.  The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. , 2012, Biochimica et biophysica acta.

[4]  Yusuf Tutar,et al.  Heat, pH Induced Aggregation and Surface Hydrophobicity of S. cerevesiae Ssa1 Protein , 2010, The protein journal.

[5]  A. Nicola,et al.  Low pH-Induced Conformational Change in Herpes Simplex Virus Glycoprotein B , 2010, Journal of Virology.

[6]  A. Labigne,et al.  The Helicobacter pylori GroES Cochaperonin HspA Functions as a Specialized Nickel Chaperone and Sequestration Protein through Its Unique C-Terminal Extension , 2010, Journal of bacteriology.

[7]  Wei-Tung Hsu,et al.  Characterizing the polymeric status of Helicobacter pylori heat shock protein 60. , 2009, Biochemical and biophysical research communications.

[8]  V. Uversky,et al.  Acid denaturation and anion-induced folding of globular proteins: multitude of equilibium partially folded intermediates. , 2009, Current protein & peptide science.

[9]  Shahid Khan,et al.  Helicobacter urease: Niche construction at the single molecule level , 2009, Journal of Biosciences.

[10]  U. Jakob,et al.  Redox-regulated chaperones. , 2009, Biochemistry.

[11]  A. Muga,et al.  Thermal adaptation of heat shock proteins. , 2008, Current protein & peptide science.

[12]  Y. Yamaoka,et al.  Helicobacter and Gastric Malignancies , 2008, Helicobacter.

[13]  Marie C. M. Lin,et al.  A Histidine-rich and Cysteine-rich Metal-binding Domain at the C Terminus of Heat Shock Protein A from Helicobacter pylori , 2008, Journal of Biological Chemistry.

[14]  Wim Jiskoot,et al.  Extrinsic Fluorescent Dyes as Tools for Protein Characterization , 2008, Pharmaceutical Research.

[15]  E. Kuipers,et al.  Pathogenesis of Helicobacter pylori Infection , 2006, Clinical Microbiology Reviews.

[16]  G. Sachs,et al.  Acid acclimation by Helicobacter pylori. , 2005, Physiology.

[17]  Y. Sun,et al.  Small heat shock proteins: molecular structure and chaperone function , 2005, Cellular and Molecular Life Sciences CMLS.

[18]  Jide Wang,et al.  Expression of Helicobacter pylori AlpA protein and its immunogenicity. , 2003, World journal of gastroenterology.

[19]  S. Mande,et al.  Mycobacterium tuberculosis GroEL homologues unusually exist as lower oligomers and retain the ability to suppress aggregation of substrate proteins. , 2004, Journal of molecular biology.

[20]  S. Karlin,et al.  Conservation among HSP60 sequences in relation to structure, function, and evolution , 2008, Protein science : a publication of the Protein Society.

[21]  H. Mobley,et al.  pH‐Dependent Protein Profiles of Helicobacter pylori Analyzed by Two‐Dimensional Gels , 2000, Helicobacter.

[22]  J. Ballard,et al.  pH-Induced Conformational Changes inClostridium difficile Toxin B , 2000, Infection and Immunity.

[23]  T. Meyer,et al.  Comparative proteome analysis of Helicobacter pylori , 2000, Molecular microbiology.

[24]  R. Rappuoli,et al.  Helicobacter pylori virulence and genetic geography. , 1999, Science.

[25]  A. Fink Chaperone-mediated protein folding. , 1999, Physiological reviews.

[26]  I. Kansau,et al.  Heat shock proteins of Helicobacter pylori. , 1996, Alimentary pharmacology & therapeutics.

[27]  A. Labigne,et al.  Helicobacter pylori hspA‐hspB heat‐shock gene cluster: nucleotide sequence, expression, putative function and immunogenicity , 1994, Molecular microbiology.

[28]  Zbyszek Otwinowski,et al.  The crystal structure of the bacterial chaperonln GroEL at 2.8 Å , 1994, Nature.

[29]  R. Rappuoli,et al.  The Hsp60 protein of Helicobacter pylori: structure and immune response in patients with gastroduodenal diseases , 1993, Molecular microbiology.

[30]  A. Fink,et al.  Mechanism of acid-induced folding of proteins. , 1990, Biochemistry.

[31]  H. Eklund,et al.  Structure of the complex of active site metal‐depleted horse liver alcohol dehydrogenase and NADH. , 1983, The EMBO journal.

[32]  Hans Eklund,et al.  Structure of Liver Alcohol Dehydrogenase at 2.9-Å Resolution , 1973 .

[33]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[34]  G. Weber,et al.  Dimer formation from 1-anilino-8-naphthalenesulfonate catalyzed by bovine serum albumin. Fluorescent molecule with exceptional binding properties , 1969 .