Electron Holography of Long-Range Electrostatic Fields

Publisher Summary This chapter presents a discussion on electron holography of long-range electrostatic fields. The chapter discusses the fundamental theoretical considerations underlying the observation of electric fields. The basic tool—that is, the phase-object approximation (POA)—is applied to the case of the electron biprism to obtain its transmission function and to analyze its effect on the image wave function within an interferometric or holographic setup. The chapter presents the basic principles of holographic recording and processing, with the modifications introduced by the long-range behavior of a particular class of electric fields—namely, the perturbation of the reference wave. Although the main emphasis is on image electron holography by means of an electron biprism, Fresnel holography using a single crystal film as an amplitude beam splitter is described in brief as this method can be carried out even if the microscope is not equipped with a field emission gun. The case of charged dielectric spheres is treated and charged microtips are analyzed. The electrostatic Aharonov–Bohm effect is reviewed in brief and it is shown how nonlocal quantum effects can arise with a particular configuration of electrostatic fields.

[1]  A new electrostatic phase-shifting effect , 1982 .

[2]  G. Pozzi On the interpretation of TEM images of p-n junctions a multislice approach , 1996 .

[3]  William M. Honig,et al.  Quantum uncertainties : recent and future experiments and interpretations , 1987 .

[4]  S. Olariu,et al.  The quantum effects of electromagnetic fluxes , 1985 .

[5]  Kazuya Matsumoto,et al.  Phase-Difference Amplification by Nonlinear Holograms , 1970 .

[6]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[7]  Hans-Werner Fink,et al.  Point source for ions and electrons , 1988 .

[8]  Akira Tonomura,et al.  Applications of electron holography , 1987 .

[9]  M. De Handbuch der Physik , 1957 .

[10]  B. Kooi,et al.  ATOMIC RESOLUTION MICROSCOPY OF SURFACES AND INTERFACES , 1997 .

[11]  Eliminating the Influence of the Perturbed Reference Wave in Electron Holography , 1995 .

[12]  J. Komrska,et al.  Justification of the Model for Electron Interference Produced by an Electrostatic Biprism , 1973 .

[13]  Hartmann,et al.  Flux measurements on ferromagnetic microprobes by electron holography. , 1994, Physical review. B, Condensed matter.

[14]  Matsuda,et al.  Electron holography observation of vortex lattices in a superconductor. , 1993, Physical review letters.

[15]  G. Pozzi,et al.  A new off-axis fresnel holographic method in transmission electron microscopy: An application on the mapping of ferromagnetic domains. III , 1982 .

[16]  L. Marton,et al.  Advances in Electronics and Electron Physics , 1958 .

[17]  David J. Smith,et al.  Direct observation of potential distribution across Si/Si p-n junctions using off-axis electron holography , 1994 .

[18]  W. Ruijter,et al.  Methods to measure properties of slow‐scan CCD cameras for electron detection , 1992 .

[19]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[20]  G. Pozzi,et al.  Electron interferometry and interference electron microscopy , 1981 .

[21]  Electron-optical analysis of the electrostatic Aharonov-Bohm effect , 1992 .

[22]  G. Möllenstedt,et al.  Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen , 1956 .

[23]  G. Morandi,et al.  On the interpretation of TEM images of p–n junctions , 1979 .

[24]  Walter Glaser,et al.  Grundlagen der Elektronenoptik , 1952 .

[25]  J. Komrska,et al.  Intensity Distributions in Electron Interference Phenomena Produced by an Electrostatic Bi-prism , 1967 .

[26]  P. Goodhew Proceedings of the 9th European Congress on Electron Microscopy , 1988 .

[27]  G. Pozzi,et al.  The realization of amplitude division electron interferometry demonstrated on ferromagnetic domain walls , 1982 .

[28]  G. Pozzi,et al.  Transmission electron microscopy observations of p–n junctions , 1975 .

[29]  G. Pozzi The influence of the external field on transmission electron microscopy observations of electric fields at interfaces , 1996 .

[30]  Takeshi Kawasaki,et al.  Sensitivity‐enhanced electron holography and its application to magnetic recording investigations , 1989 .

[31]  G. Pozzi,et al.  Electron holography in the study of the electrostatic fields: the case of charged microtips , 1992 .

[32]  J. M. Cowley,et al.  Comment on ‘‘Electron holographic study of ferroelectric domain walls’’ , 1993 .

[33]  G. Pozzi,et al.  Interpretation of Holographic Contour Maps of Reverse Biased p-n Junctions , 1995 .

[34]  K. Harada,et al.  Real-time observation of vortex lattices in a superconductor by electron microscopy , 1992, Nature.

[35]  G. Pozzi,et al.  Contrast Effects in the Out‐of‐Focus Images of a p‐n Junction , 1973 .

[36]  Yamada,et al.  Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. , 1986, Physical review letters.

[37]  D. Joy,et al.  Electron holographic study of ferroelectric domain walls , 1992 .

[38]  W. O. Saxton,et al.  The Electrostatic Contribution to the Forward‐Scattering Potential at aSpace Charge Layer in High‐Energy Electron Diffraction. I. Theory Neglecting the Effects of Fringing Fields , 1996 .

[39]  B. Frost An electron holographic study of electric charging and electric charge distributions , 1998 .

[40]  K. Hanszen Holography in Electron Microscopy , 1982 .

[41]  T. H. Boyer,et al.  Classical Electromagnetic Deflections and Lag Effects Associated with Quantum Interference Pattern Shifts: Considerations Related to the Aharonov-Bohm Effect , 1973 .

[42]  Vanzi,et al.  Electron holographic observations of the electrostatic field associated with thin reverse-biased p-n junctions. , 1985, Physical review letters.

[43]  L. Allard,et al.  An improved mode of operation of a transmission electron microscope for wide field off-axis holography , 1996 .

[44]  Matteucci,et al.  New diffraction experiment on the electrostatic Aharonov-Bohm effect. , 1985, Physical review letters.

[45]  G. Ade Digital Techniques in Electron Off-Axis Holography , 1994 .

[46]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[47]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[48]  N. F. Hulst,et al.  Study of the leakage field of magnetic force microscopy thin-film tips using electron holography , 1996 .

[49]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[50]  D. Gabor Microscopy by Reconstructed Wave Fronts: II , 1951 .

[51]  G. Pozzi,et al.  Interferometric and holographic techniques in transmission electron microscopy for the observation of magnetic domain structures , 1984 .

[52]  G. Pozzi,et al.  Observation of electrostatic fields by electron holography: The case of reverse-biased p-n junctions , 1987 .

[53]  J. Komrska Scalar Diffraction Theory in Electron Optics , 1971 .

[54]  Endo,et al.  Sensitivity-enhanced electron-holographic interferometry and thickness measurement applications at atomic scale. , 1985, Physical review letters.

[55]  U. Valdrè,et al.  Electron microscopy in material science , 1971 .

[56]  J. N. Chapman,et al.  REVIEW ARTICLE: The investigation of magnetic domain structures in thin foils by electron microscopy , 1984 .

[57]  D. Gabor A New Microscopic Principle , 1948, Nature.

[58]  Thomas L. Lentz,et al.  Advances in Optical and Electron Microscopy , 1970, The Yale Journal of Biology and Medicine.

[59]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[60]  A. Tonomura Electron holography to image magnetic domains (invited) , 1987 .

[61]  Massimo Vanzi,et al.  ELECTRON HOLOGRAPHY OF LONG-RANGE ELECTRIC AND MAGNETIC FIELDS , 1991 .

[62]  K. Hanszen Method of off-axis electron holography and investigations of the phase structure in crystals , 1986 .

[63]  J. Goodman Introduction to Fourier optics , 1969 .

[64]  M. Muccini,et al.  On electron holographic mapping of electric and magnetic fields: recording and processing problems and field information reliability , 1994 .

[65]  Q. Ru Incoherent electron holography , 1995 .

[66]  G. Pozzi,et al.  Amplitude division electron interferometry , 1981 .

[67]  Daniel M. Greenberger,et al.  The Aharonov-Bohm Effect , 1989 .

[68]  Dravid,et al.  Direct imaging of spatially varying potential and charge across internal interfaces in solids. , 1995, Physical review letters.

[69]  D. Gabor Microscopy by reconstructed wave-fronts , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[70]  A. Messiah Quantum Mechanics , 1961 .

[71]  A. Tonomura,et al.  Electron holography available in a non-biprism transmission electron microscope , 1994 .

[72]  W. O. Saxton,et al.  The electrostatic contribution to the forward-scattering potential at a space charge layer in high-energy electron diffraction. II. Fringing fields , 1997 .

[73]  Chen,et al.  Mapping of microelectrostatic fields by means of electron holography: Theoretical and experimental results. , 1989, Physical review. A, General physics.

[74]  A. Tonomura Electron-holographic interference microscopy , 1992 .

[75]  Raymond J. Seeger,et al.  Lectures in Theoretical Physics , 1962 .

[76]  G. Pozzi,et al.  Mapping of microelectric and magnetic fields with double‐exposure electron holography , 1988 .