P-i-n InGaN homojunctions (10–40% In) synthesized by plasma-assisted molecular beam epitaxy with extended photoresponse to 600 nm
暂无分享,去创建一个
K. Kheng | E. Monroy | P. Ruterana | E. Monroy | P. Ruterana | K. Kheng | L. Redaelli | S. Valdueza-Felip | S. Valdueza-Felip | L. Redaelli | A. Ajay | M. Chauvat | M. P. Chauvat | T. Cremel | M. Jim'enez-Rodr'iguez | A. Ajay | T. Cremel | M. Jim'enez-Rodr'iguez
[1] P. Ruterana,et al. HREM study of stacking faults in GaN layers grown over sapphire substrate , 2000 .
[2] Hadis Morkoç,et al. Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries , 2000 .
[3] P. Russell,et al. Minority-carrier diffusion length in a GaN-based light-emitting diode , 2001 .
[4] E. Monroy,et al. Modification of GaN(0001) growth kinetics by Mg doping , 2004 .
[5] P. Vogl,et al. nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.
[6] D. Starikov,et al. Fabrication and characterization of 2.3eV InGaN photovoltaic devices , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.
[7] W. Walukiewicz,et al. Modeling of InGaN/Si tandem solar cells , 2008 .
[8] Lester F. Eastman,et al. Growth, fabrication, and characterization of InGaN solar cells , 2008 .
[9] W. Schaff,et al. Electrical properties of InGaN‐Si heterojunctions , 2009 .
[10] Wladek Walukiewicz,et al. Finite element simulations of compositionally graded InGaN solar cells , 2010 .
[11] Chih-Ming Lai,et al. Theoretical simulations of the effects of the indium content, thickness, and defect density of the i-layer on the performance of p-i-n InGaN single homojunction solar cells , 2010 .
[12] R. Kudrawiec,et al. Growth and characterization of ingan for photovoltaic devices , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.
[13] Akio Yamamoto,et al. InGaN Solar Cells: Present State of the Art and Important Challenges , 2012, IEEE Journal of Photovoltaics.
[14] Md Jahirul Islam,et al. MOVPE Growth of InxGa1−xN (x ∼ 0.4) and Fabrication of Homo-junction Solar Cells , 2013 .
[15] T. Araki,et al. P-type InGaN across the entire alloy composition range , 2013 .
[16] T. L. Williamson,et al. In-rich InGaN thin films: Progress on growth, compositional uniformity, and doping for device applications , 2013 .
[17] Yu Wang,et al. Investigation of InGaN p-i-n Homojunction and Heterojunction Solar Cells , 2013, IEEE Photonics Technology Letters.
[18] L. Tu,et al. Modeling of InGaN p-n junction solar cells , 2013 .
[19] X. Hou,et al. Theoretical simulations of InGaN/Si mechanically stacked two-junction solar cell , 2013 .
[20] K. Yu,et al. InGaN doping for high carrier concentration in plasma-assisted molecular beam epitaxy , 2014 .
[21] E. Monroy,et al. High In-content InGaN layers synthesized by plasma-assisted molecular-beam epitaxy: Growth conditions, strain relaxation, and In incorporation kinetics , 2014, 1410.5659.
[22] J. Eymery,et al. Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration , 2014 .
[23] W. Doolittle,et al. Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells , 2014 .
[24] Christiana B. Honsberg,et al. III-Nitride Double-Heterojunction Solar Cells With High In-Content InGaN Absorbing Layers: Comparison of Large-Area and Small-Area Devices , 2016, IEEE Journal of Photovoltaics.
[25] M. Androulidaki,et al. Molecular beam epitaxy of thick InGaN(0001) films: Effects of substrate temperature on structural and electronic properties , 2016 .
[26] I. Saad,et al. InGaN photocell significant efficiency enhancement on Si – an influence of interlayer physical properties , 2016 .