P-i-n InGaN homojunctions (10–40% In) synthesized by plasma-assisted molecular beam epitaxy with extended photoresponse to 600 nm

[1]  P. Ruterana,et al.  HREM study of stacking faults in GaN layers grown over sapphire substrate , 2000 .

[2]  Hadis Morkoç,et al.  Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries , 2000 .

[3]  P. Russell,et al.  Minority-carrier diffusion length in a GaN-based light-emitting diode , 2001 .

[4]  E. Monroy,et al.  Modification of GaN(0001) growth kinetics by Mg doping , 2004 .

[5]  P. Vogl,et al.  nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.

[6]  D. Starikov,et al.  Fabrication and characterization of 2.3eV InGaN photovoltaic devices , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[7]  W. Walukiewicz,et al.  Modeling of InGaN/Si tandem solar cells , 2008 .

[8]  Lester F. Eastman,et al.  Growth, fabrication, and characterization of InGaN solar cells , 2008 .

[9]  W. Schaff,et al.  Electrical properties of InGaN‐Si heterojunctions , 2009 .

[10]  Wladek Walukiewicz,et al.  Finite element simulations of compositionally graded InGaN solar cells , 2010 .

[11]  Chih-Ming Lai,et al.  Theoretical simulations of the effects of the indium content, thickness, and defect density of the i-layer on the performance of p-i-n InGaN single homojunction solar cells , 2010 .

[12]  R. Kudrawiec,et al.  Growth and characterization of ingan for photovoltaic devices , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[13]  Akio Yamamoto,et al.  InGaN Solar Cells: Present State of the Art and Important Challenges , 2012, IEEE Journal of Photovoltaics.

[14]  Md Jahirul Islam,et al.  MOVPE Growth of InxGa1−xN (x ∼ 0.4) and Fabrication of Homo-junction Solar Cells , 2013 .

[15]  T. Araki,et al.  P-type InGaN across the entire alloy composition range , 2013 .

[16]  T. L. Williamson,et al.  In-rich InGaN thin films: Progress on growth, compositional uniformity, and doping for device applications , 2013 .

[17]  Yu Wang,et al.  Investigation of InGaN p-i-n Homojunction and Heterojunction Solar Cells , 2013, IEEE Photonics Technology Letters.

[18]  L. Tu,et al.  Modeling of InGaN p-n junction solar cells , 2013 .

[19]  X. Hou,et al.  Theoretical simulations of InGaN/Si mechanically stacked two-junction solar cell , 2013 .

[20]  K. Yu,et al.  InGaN doping for high carrier concentration in plasma-assisted molecular beam epitaxy , 2014 .

[21]  E. Monroy,et al.  High In-content InGaN layers synthesized by plasma-assisted molecular-beam epitaxy: Growth conditions, strain relaxation, and In incorporation kinetics , 2014, 1410.5659.

[22]  J. Eymery,et al.  Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration , 2014 .

[23]  W. Doolittle,et al.  Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells , 2014 .

[24]  Christiana B. Honsberg,et al.  III-Nitride Double-Heterojunction Solar Cells With High In-Content InGaN Absorbing Layers: Comparison of Large-Area and Small-Area Devices , 2016, IEEE Journal of Photovoltaics.

[25]  M. Androulidaki,et al.  Molecular beam epitaxy of thick InGaN(0001) films: Effects of substrate temperature on structural and electronic properties , 2016 .

[26]  I. Saad,et al.  InGaN photocell significant efficiency enhancement on Si – an influence of interlayer physical properties , 2016 .