Optimal Alternating Direction Implicit Preconditioners for Conjugate Gradient methods

In this work the (Extrapolated) Alternating Direction Implicit ((E)ADI) Preconditioners for the Conjugate Gradient (CG) Method are applied for the solution of the second order elliptic partial differential equation (PDE) in a rectangle under Dirichlet boundary conditions. It is shown that the spectral condition number for the discretized model problem, when the ADI-CG Method is used, is an order of magnitude smaller than that of the CG Method. The PDE is approximated by uniform 5- and 9-point stencils and it is shown that the determination of the optimal condition number is equivalent to that of the determination of the optimal EADI scheme. Analytic expressions for the optimal acceleration and extrapolation parameters are obtained in both cases of the 5- and 9-point schemes; those for the 5-point complete known ones while those for the 9-point are novel. Finally, numerical examples show that the EADI preconditioners proposed make the CG methods compete well against most of the fastest well-known methods.

[1]  John R. Rice,et al.  Analysis of Iterative Line Spline Collocation Methods for Elliptic Partial Differential Equations , 1999, SIAM J. Matrix Anal. Appl..

[2]  E. A. Vavalis,et al.  ADI Methods for Cubic Spline Collocation Discretizations of Elliptic PDE , 1998, SIAM J. Sci. Comput..

[3]  E. L. Wachspress Three-variable alternating-direction-implicit iteration , 1994 .

[4]  A. Hadjidimos The numerical solution of a model problem biharmonic equation by using Extrapolated Alternating Direction Implicit methods , 1971 .

[5]  A. Hadjidimos,et al.  Solving Laplace's equation in a rectangle by alternating direction implicit methods , 1974 .

[6]  Gerhard Starke,et al.  Optimal alternating direction implicit parameters for nonsymmetric systems of linear equations , 1991 .

[7]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[8]  A. A. Samarskii,et al.  The Theory of Difference Schemes , 2001 .

[9]  Eugene L. Wachspress,et al.  Alternating direction implicit iteration for systems with complex spectra , 1991 .

[10]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[11]  Jack Guittet,et al.  Une nouvelle méthode de directions alternées à q variables , 1967 .

[12]  G. Birkhoff,et al.  Numerical Solution of Elliptic Problems , 1984 .

[13]  P. Swarztrauber,et al.  Efficient FORTRAN subprograms for the solution of elliptic partial differential equations. , 1975, SIGNUM.

[14]  J. J. Douglas Alternating direction methods for three space variables , 1962 .

[15]  John R. Rice,et al.  Tensor Product Analysis of Alternating Direction Implicit Methods , 1965 .

[16]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[17]  P. Halmos Finite-Dimensional Vector Spaces , 1960 .

[18]  A. Hadjidimos Extrapolated alternating direction implicit iterative methods , 1970 .

[19]  John R. Rice,et al.  Iterative Line Cubic Spline Collocation Methods for Elliptic Partial Differential Equations in Several Dimensions , 1993, SIAM J. Sci. Comput..

[20]  Thomas C. Oppe,et al.  NSPCG (Nonsymmetric Preconditioned Conjugate Gradient) user's guide: Version 1. 0: A package for solving large sparse linear systems by various iterative methods , 1988 .

[21]  John C. Adams,et al.  MUDPACK: Multigrid portable FORTRAN software for the efficient solution of linear elliptic partial d , 1989 .

[22]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[23]  G. Starke Fields of values and the ADI method for non-normal matrices , 1993 .

[24]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[25]  Gerhard Starke Alternating Direction Preconditioning for Nonsymmetric Systems of Linear Equations , 1994, SIAM J. Sci. Comput..

[26]  R. T. Dames,et al.  An alternating direction method for solving the biharmonic equation. , 1958 .

[27]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[28]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[29]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.

[30]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[31]  Eugene L. Wachspress Generalized ADI preconditioning , 1984 .

[32]  Elias N. Houstis,et al.  High-Order Fast Elliptic Equation Solvers , 1979, TOMS.

[33]  A. A. Samarskii,et al.  Alternating direction iterational schemes for the numerical solution of the dirichlet problem , 1964 .