Evaluating the quality of approximations to the non-dominated set

The growing interest in hard multiple objective combina tori l and non-linear problems resulted in a significant number of heuristic me thods aiming at generating sets of feasible solutions as approximations to the set of non -dominated solutions. The issue of evaluating these approximations is addressed. Such evaluatio ns re useful when performing experimental comparisons of different multiple objective heuristic algorithms, when defining stopping rules of multiple objective heuristic algorithms, and when adjusting parameters of heuristic algorithms to a given problem. A family of out performance relations that can be used to compare approximations under very weak assumptions about a decision-maker’s preferences is introduced. These outperformance relations define incomplete orders in the set of all approximations. It is shown that in order to co mpare approximations, which are incomparable according to the outperformance relations, much stronger assumptions about the decision-maker's preferences are necessary. A general f ramework that can be used to compare and evaluate approximations under the presence of various t ype of additional information is proposed. Some particular comparison and evaluation methods based on this framework are suggested. The proposed framework is also used to characteriz e some previously proposed evaluation methods.

[1]  D. de Werra,et al.  A tutorial on heuristic methods , 1980 .

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  W. Habenicht,et al.  Quad Trees, a Datastructure for Discrete Vector Optimization Problems , 1983 .

[4]  Richard E. Rosenthal,et al.  Principles of multiobjective optimization , 1984 .

[5]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[6]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[7]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[8]  H. Weistroffer Careful usage of pessimistic values is needed in multiple objectives optimization , 1985 .

[9]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[10]  Paolo Serafini,et al.  Some Considerations about Computational Complexity for Multi Objective Combinatorial Problems , 1987 .

[11]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[12]  A Assad,et al.  MODELING AND IMPLEMENTATION ISSUES IN VEHICLE ROUTING , 1988 .

[13]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[14]  Roman Slowinski,et al.  Multiobjective project scheduling under multiple-category resource constraint , 1989 .

[15]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[16]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[17]  D. J. White,et al.  A Bibliography on the Applications of Mathematical Programming Multiple-objective Methods , 1990 .

[18]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[19]  Richard L. Daniels,et al.  Analytical Evaluation of Multi-Criteria Heuristics , 1992 .

[20]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[21]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[22]  E. L. Ulungu,et al.  Multi‐objective combinatorial optimization problems: A survey , 1994 .

[23]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[24]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[25]  Ralph E. Steuer,et al.  InterQuad: An interactive quad tree based procedure for solving the discrete alternative multiple criteria problem , 1996 .

[26]  Mikael Lind,et al.  On bicriterion minimal spanning trees: An approximation , 1996, Comput. Oper. Res..

[27]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[28]  Zachary F. Lansdowne,et al.  Ordinal ranking methods for multicriterion decision making , 1996 .

[29]  Aplicação de meta-heurísticas multiobjectivo ao problema de sequenciamento de actividades com restrições de recursos , 1997 .

[30]  Ralph E. Steuer,et al.  A Heuristic for Estimating Nadir Criterion Values in Multiple Objective Linear Programming , 1997, Oper. Res..

[31]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[32]  Michael Pilegaard Hansen,et al.  Tabu Search for Multiobjective Optimization: MOTS , 1997 .

[33]  Xavier Gandibleux,et al.  A Tabu Search Procedure to Solve MultiObjective Combinatorial Optimization Problems , 1997 .

[34]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[35]  Philippe Fortemps,et al.  Performance of the MOSA Method for the Bicriteria Assignment Problem , 2000, J. Heuristics.

[36]  Hiroyuki Morita A Genetic Algorithm for Bicriteria Scheduling Problems , 2000 .