Automatic identification of insects from digital images: A survey

[1]  M. Stoetzel Information on and identification of Diuraphis noxia (Homoptera: Aphididae) and other aphid species colonizing leaves of wheat and barley in the United States , 1987 .

[2]  Fangyuan Wang,et al.  PestNet: An End-to-End Deep Learning Approach for Large-Scale Multi-Class Pest Detection and Classification , 2019, IEEE Access.

[3]  Karen Lucero Roldán-Serrato,et al.  Automatic pest detection on bean and potato crops by applying neural classifiers , 2018, Engineering in Agriculture, Environment and Food.

[4]  Hatem A. Rashwan,et al.  Automatic detection of individual and touching moths from trap images by combining contour-based and region-based segmentation , 2018, IET Comput. Vis..

[5]  L. C. Wright,et al.  Population Dynamics of Brachycorynella asparagi (Homoptera: Aphididae) on Undisturbed Asparagus in Washington State , 1988 .

[6]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[7]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[8]  Chunjiang Zhao,et al.  Intelligent alerting for fruit-melon lesion image based on momentum deep learning , 2015, Multimedia Tools and Applications.

[9]  Zhi Zhang,et al.  Animal Detection From Highly Cluttered Natural Scenes Using Spatiotemporal Object Region Proposals and Patch Verification , 2016, IEEE Transactions on Multimedia.

[10]  Wilson Castro,et al.  Using Artificial Neural Networks for Detecting Damage on Tobacco Leaves Caused by Blue Mold , 2018 .

[11]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Ashutosh Kumar Singh,et al.  A deep learning framework to discern and count microscopic nematode eggs , 2018, Scientific Reports.

[13]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[15]  Andreas Kamilaris,et al.  Deep learning in agriculture: A survey , 2018, Comput. Electron. Agric..

[16]  Christoph H. Lampert,et al.  Beyond sliding windows: Object localization by efficient subwindow search , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Artzai Picón,et al.  Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild , 2019, Comput. Electron. Agric..

[18]  Chenglu Wen,et al.  Pose estimation-dependent identification method for field moth images using deep learning architecture , 2015 .

[19]  Weida Tong,et al.  Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles , 2018, Scientific Reports.

[20]  Bing Wang,et al.  Automatic Localization and Count of Agricultural Crop Pests Based on an Improved Deep Learning Pipeline , 2019, Scientific Reports.

[21]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Jonathan Cheung-Wai Chan,et al.  FOV Expansion of Bioinspired Multiband Polarimetric Imagers With Convolutional Neural Networks , 2018, IEEE Photonics Journal.

[23]  Yiannis Ampatzidis,et al.  Automated vision-based system for monitoring Asian citrus psyllid in orchards utilizing artificial intelligence , 2019, Comput. Electron. Agric..

[24]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[25]  Di Zhang,et al.  Deep recursive super resolution network with Laplacian Pyramid for better agricultural pest surveillance and detection , 2018, Comput. Electron. Agric..

[26]  Azree Nazri,et al.  PENYEK: Automated brown planthopper detection from imperfect sticky pad images using deep convolutional neural network , 2018, PloS one.

[27]  Abrham Debasu Mengistu,et al.  Computer vision for Ethiopian agricultural crop pest identification , 2016 .

[28]  Sang Cheol Kim,et al.  A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition , 2017, Sensors.

[29]  Jeffrey J. Rodriguez,et al.  Size-Invariant Detection of Cell Nuclei in Microscopy Images , 2016, IEEE Transactions on Medical Imaging.

[30]  Andrea Luvisi,et al.  X-FIDO: An Effective Application for Detecting Olive Quick Decline Syndrome with Deep Learning and Data Fusion , 2017, Front. Plant Sci..

[31]  Tao Wang,et al.  Automatic Segmentation and Counting of Aphid Nymphs on Leaves Using Convolutional Neural Networks , 2018, Agronomy.

[32]  Luis Herranz,et al.  Scene Recognition with CNNs: Objects, Scales and Dataset Bias , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Xiaoming Li,et al.  Corn Classification System based on Computer Vision , 2019, Symmetry.

[34]  David Hughes,et al.  Deep Learning for Image-Based Cassava Disease Detection , 2017, Front. Plant Sci..

[35]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[36]  Thomas G. Dietterich,et al.  Segmentation of touching insects based on optical flow and NCuts , 2013 .

[37]  Markos Avlonitis,et al.  DIRT: The Dacus Image Recognition Toolkit , 2018, J. Imaging.

[38]  Putra Sumari,et al.  Enhancing the Diagnosis of Corn Pests using Gabor Wavelet Features and SVM Classification , 2016 .

[39]  Alejandro López,et al.  Combination of image processing and artificial neural networks as a novel approach for the identification of Bemisia tabaci and Frankliniella occidentalis on sticky traps in greenhouse agriculture , 2016, Comput. Electron. Agric..

[40]  Ali Ahmadi,et al.  Deep Learning Based on Parallel CNNs for Pedestrian Detection , 2018 .

[41]  M. Rasekh,et al.  Using different classification models in wheat grading utilizing visual features , 2018 .

[42]  Yao Zhou,et al.  A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture , 2018, Sensors.

[43]  Yu Sun,et al.  Automatic in-trap pest detection using deep learning for pheromone-based Dendroctonus valens monitoring , 2018, Biosystems Engineering.

[44]  Dan Zecha,et al.  A closer look: Small object detection in faster R-CNN , 2017, 2017 IEEE International Conference on Multimedia and Expo (ICME).

[45]  Olarik Surinta,et al.  Comparing Local Descriptors and Bags of Visual Words to Deep Convolutional Neural Networks for Plant Recognition , 2017, ICPRAM.

[46]  Xi Cheng,et al.  Pest identification via deep residual learning in complex background , 2017, Comput. Electron. Agric..

[47]  Jun Zhang,et al.  Insect Detection and Classification Based on an Improved Convolutional Neural Network , 2018, Sensors.

[48]  Graham W. Taylor,et al.  Automatic moth detection from trap images for pest management , 2016, Comput. Electron. Agric..

[49]  Huan Zhang,et al.  Localization and Classification of Paddy Field Pests using a Saliency Map and Deep Convolutional Neural Network , 2016, Scientific Reports.

[50]  A. Siva Sangari,et al.  Performance Evaluation of Optimal Parameters for Pest Image Segmentation using FCM and ACO , 2016 .

[51]  Yufeng Shen,et al.  Detection of stored-grain insects using deep learning , 2018, Comput. Electron. Agric..

[52]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).